یادگیری ماشین

نام کتاب: یادگیری ماشین در عمل
20 بهمن 1397
ساخت برنامه‌هایی منطبق با انقلاب صنعتی چهارم، کشف قابلیت‌ها و توانایی‌های هوش مصنوعی و زیرشاخه‌های این فناوری، به‌کارگیری پتانسیل‌های بارز اینترنت اشیا، پیاده‌سازی بستری قدرتمند و ایمن با اتکا بر زنجیره بلوکی و ترکیب این فناوری‌ها با یکدیگر در قالب یک برنامه کاربردی مبتنی بر دات‌نت بدون شک یک پروژه هیجان‌برانگیز برنامه‌نویسی خواهد بود. طراحی و پیاده‌سازی چنین برنامه‌ای به سطح بالایی از هوشمندی، ایمنی و اتصال همیشه پایدار نیاز دارد. اما نگران نباشید، برای تسلط بر این فناوری‌ها نیازی نیست وقت خود را صرف پیدا کردن منابع مختلف کنید. در کتاب «ساخت نسل بعدی برنامه‌های دات‌نت با اتکا به اینترنت اشیا، هوش مصنوعی، زنجیره بلوکی» یاد خواهید گرفت چطور از اینترنت آژر، واسط‌های برنامه‌نویسی شناختی و زنجیره بلوکی در قالب سرویس به‌منظور ساخت برنامه‌هایی بر پایه دات‌نت استفاده کنید.
در شماره گذشته با بخش اول مطلب چگونه می‌توانیم در عمل از یادگیری ماشین استفاده کنیم؟ آشنا شدیم و به شما گفتیم که دو رویکرد یادگیری تحت نظارت و بدون نظارت چه تفاوت‌هایی با یکدیگر دارند و چرا پیاده‌سازی الگوی یادگیری تحت نظارت و برچسب‌گذاری داده‌ها از اهمیت خاصی برخوردار است. در این شماره بخش دوم این مطلب را ادامه دهیم.
کافی است چند دقیقه از وقت خود را صرف تحقیق درباره هوش مصنوعی و به‌ویژه یادگیری ماشین کنید تا ببینید اهل فن همگی به این حقیقت اذعان دارند که آینده از آن هوش مصنوعی است. البته به نظرم ایده بدی نیست که واژه آینده را از اصطلاح هوش مصنوعی حذف کنیم. به دلیل این‌که الگوریتم‌های هوشمند از مدت‌ها پیش از سوی همه ما به کار گرفته شده‌اند، حتی زمانی که خودمان هم نمی‌دانستیم در حال استفاده از آن‌ها هستیم. اما چطور می‌توانیم به حداقل دانش لازم در زمینه یادگیری ماشین دست پیدا کنیم؟ دانشی که به ما اجازه دهد زمانی‌که در جمعی قرار داریم درباره هوش مصنوعی صحبت کنیم؟ برای دستیابی به چنین دانشی به سطح بالایی از مطالعه و پژوهش نیاز دارید. اما در نوشتار این شماره و شماره آینده نحوه به‌کارگیری عملی یک الگوریتم یادگیری ماشین ساده را توضیح خواهیم داد.
ورود به حوزه هوش مصنوعی و برنامه‌نویسی الگوریتم‌های هوشمند کار ساده‌ای نیست. پژوهشگران برجسته این حوزه بر این باور هستند که تعدد منابع و تخصصی بودن بیش از حد مطالب باعث شده است کاربران به راحتی موفق نشوند نقطه شروع را پیدا کرده و در مسیر درستی گام بردارند. هوش مصنوعی فناوری در حال تکاملی است و در نتیجه افرادی که تصمیم دارند به این حوزه وارد شوند مجبور هستند برای همگام شدن با این تکامل دانش خود را دائما ارتقا دهند. یک برنامه‌نویس یا پژوهشگر هوش مصنو‌عی برای آن‌که بتواند دانش خود را با تغییرات همسو کند باید در پروژه‌های متن‌باز مشارکت داشته، ابزارهایی که متخصصان حرفه‌ای از آن‌ها استفاده می‌کنند را بررسی کرده و در انجمن‌های حرفه‌ای به بحث و تبادل نظر پیرامون الگوریتم‌ها، چارچوب‌ها و کتابخانه‌های مطرح این حوزه بپردازد تا اطلاعاتش همواره به‌روز باشد.
به‌نظر شما یادگیری ماشین و یادگیری عمیق نسبت به توسعه‌دهنده وب مسیر بهتری برای انتخاب شغل هستند؟ این سئوالی است که در ذهن خیلی از کارجویان و عاشقان دنیای فناوری شکل می‌گیرد. پس بهتر است نگاهی داشته باشیم به پاسخ این سئوال در Quora، مکانی فوق‌العاده برای اشتراک‌گذاری دانش، تشویق افراد به یادگیری از یکدیگر و هم‌چنین به‌دست آوردن درک و فهم بهتر از دنیا.
اگر دوست دارید در زمینه هوش مصنوعی حرفی برای گفتن داشته باشید و از دانش خود برای پیاده‌سازی الگوهای هوشمند در دنیای واقعی استفاده کنید باید به سراغ منابعی بروید که این دانش را به شکل عملی به شما یاد می‌دهند. هوش مصنوعی همراه با مثال‌های کاربردی منبع ارزشمندی است که چنین دانشی در اختیارتان قرار می‌دهد.
یادگیری ماشین در عمل با پایتون
27 آبان 1397
اگر از شما این سوال پرسیده شود که در میان زبان‌های رایج برنامه‌نویسی که امروزه به کار گرفته می‌شوند کدامیک از آن‌ها به شما اجازه می‌دهند در سریع‌ترین زمان برنامه‌ای بنویسید که روی پلتفرم‌های مختلف قابل اجرا باشد چه جوابی می‌دهید؟ آیا جواب شما پایتون نخواهد بود؟ یکی از قابلیت‌های اعجاب‌برانگیز پایتون این است که اجازه می‌دهد روی یک پلتفرم برنامه خود را بنویسید، اما روی سایر پلتفرم‌ها آن‌ها اجرا کنید. اما فراتر از این مباحث، اگر از شما این سوال پرسیده شود که مناسب‌ترین زبان برای کار با الگوریتم‌های یادگیری ماشین چه زبانی است پاسخ شما چه خواهد بود؟ زبانی که به شما اجازه دهد بر مبنای یک ترکیب نحوی ساده اما انعطاف‌پذیر بتوانید الگوریتم‌های یادگیری ماشین را پیاده‌سازی کنید.
ما همیشه علاقمند هستیم ماشین‌هایی بسازیم تا بتوانند ببینند و دنیای اطراف خود را درک کنند. این روزها استفاده از یادگیری ماشین در حوزه بینایی کامپیوتری محبوبیت زیادی پیداکرده‌ و محققان به‌طورجدی روی استفاده از روش‌های یادگیری ماشینی در حوزه تصویرگری و تحلیل تصاویر کار می‌کنند. فیس‌بوک قصد دارد با تحلیل انبوه تصاویری که کاربرانش با کمال میل در اختیارش قرار می‌دهند، مدل‌های سه‌بعدی استخراج کند.
طراحان تراشه با چالشی مواجه هستند؛ فرآیند کند ساخت مدارهای پردازشی که نیازمند سال‌ها تحقیق و توسعه است و در مقابل، رشد سریع حوزه نرم‌افزار، طراحان سخت‌افزار را به دردسر انداخته است چون آن‌ها در پیش‌بینی وظایفی که در آینده بر دوش سخت‌افزارهایشان گذاشته خواهد شد با دشواری‌های زیادی روبه‌رو هستند. ممکن است برای طراحی و توسعه یک معماری پردازشی جدید، میلیون‌ها دلار خرج شود و سال‌ها زمان صرف شود ولی نتیجه آن چیزی نباشد که انتظار می‌رفت و این، ریسک بزرگی در چنین سرمایه‌گذاری هنگفتی محسوب می‌شود.

صفحه‌ها

اشتراک در یادگیری ماشین