24 بهمن 1399
کاربردهای مهم داده کاوی و علم آمار در دنیای امروز
سامانه پیشنهاد‌گر کننده (Recommender System) به سامانه‌ای گفته می‌شود که با تحلیل رفتار کاربر مناسب‌ترین پیشنهاد در ارتباط با محصولات یا سرویس‌ها را ارائه می‌کند. این سامانه با هدف غلبه بر مشکلات ناشی از حجم فراوان و رو به رشد اطلاعات ایجاد می‌شود و به کاربر کمک می‌کند در میان حجم عظیم اطلاعات سریع‌تر به هدف خود نزدیک شوند. برخی سامانه پیشنهادگر را هم‌طراز با پالایش گروهی (Collaborative filtering) توصیف می‌کنند.

الگوریتم لونبرگ-مارکوارت

الگوریتم لونبرگ-مارکوارت روشی است برای یافتن کمینه یک تابع غیر خطی چند متغیره که به عنوان یک روش استاندارد برای حل مسئله کمینه مربعات برای توابع غیرخطی درآمده است. الگوریتم لونبرگ-مارکوارت(LMA)بین الگوریتم گاوس-نیوتون(GNA) و روش نزول گرادیانی درونیابی می‌کند. LMA از GNA مقاوم‌تر است، که یعنی در بسیاری مواقع، حتی اگر بسیار دورتر از کمینه نهایی شروع کرده باشد، جوابی را پیدا می‌کند. از دیگر سو، برای تابع‌های خوشرفتار و پارامترهای آغازین معقول، LMA کمی کندتر از GNA است. LMA پرطرفدارترین الگوریتم برازش خم است و کاربران کمی ممکن است به روش‌های دیگر برازش خم نیاز پیدا کنند.

رگرسیون خطی بیز

در آمار، رگرسیون خطی بیز یک رویکرد به رگرسیون خطی است که در آن تجزیه و تحلیل آماری در چارچوب استنباط بیزی انجام می‌شود. هنگامی که خطاهای مدل رگرسیون خطی از یک توزیع طبیعی پیروی کند، با در نظر گرفتن یک توزیع پیشین بر روی پارامترهای مدل، پیش‌بینی مدل از یک توزیع پسین که از قانون بیز به‌دست آمده، استفاده می‌کند.

سامانه پیشنهاد‌گر کننده

تعاریف متفاوتی برای سیستم‌های توصیه‌گر ارائه شده‌است. از آن جمله، تعریف کلی‌نگر و خلاصه آقای Ting-peng liang در سال ۲۰۰۷ است که RS را زیرمجموعه‌ای از DSSها می‌داند و آن‌ها را سیستم‌های اطلاعاتی تعریف می‌کند که، توانایی تحلیل رفتارهای گذشته و ارائه توصیه‌هایی برای مسائل جاری را دارا هستند. به زبان ساده‌تر در سیستم‌های توصیه‌گر تلاش بر این است تا با حدس زدن شیوه تفکر کاربر (به کمک اطلاعاتی که از نحوه رفتار وی یا کاربران مشابه وی و نظرات آن‌ها داریم) به وی مناسب‌ترین و نزدیک‌ترین کالا به سلیقه او را شناسایی و پیشنهاد کنیم. این سیستم‌ها در حقیقت همان فرایندی که ما در زندگی روزمره خود به کار می‌بریم و طی آن تلاش می‌کنیم تا افرادی با سلایق نزدیک به خود را پیدا کرده و از آن‌ها در مورد انتخاب‌هایمان نظر بخواهیم. توصیه‌هایی که از سوی سیستم‌های توصیه‌گر ارائه می‌شوند به‌طور کلی می‌توانند دو نتیجه دربرداشته باشند:  کاربر را در اخذ تصمیمی یاری می‌کنند (که مثلاً از میان چندین گزینه پیش رو کدام بهتر است و آن را انتخاب کند و …) و موجب افزایش آگاهی کاربر، در زمینه مورد علاقه وی می‌شود (مثلاً در حین ارائه توصیه به کاربر موجب می‌شود تا وی با اقلام و اشیاء جدیدی را که قبلاً آن‌ها را نمی‌شناخته، آشنا شود) شود.

سیستم‌های توصیه‌گر برای هر دو طرف یک تعامل (تجاری یا غیرتجاری)، مفید هستند و مزایایی را فراهم می‌آورد. برای نمونه در یک تعامل تجاری، مشتری‌ها از این جهت که عمل جستجو در میان حجم زیاد اطلاعات برای آن‌ها تسهیل و تسریع می‌شود، استفاده از سیستم‌های توصیه‌گر را مفید می‌دانند؛ فروشندگان به کمک این سیستم‌ها می‌توانند رضایت مشتریان را بالا برده و نیز فروش خود را افزایش دهد.

ابتدا بهتر است برای درک مفهوم سیستم توصیه‌گر، مفاهیم مرتبط با این سامانه‌ها را بررسی کنیم.

در سیستم‌های توصیه گر به کاربری که توصیه جاری در سیستم، برای وی در حال پردازش و آماده شدن است، کاربر فعال یا کاربر هدف می‌گویند.

الگوریتم‌های به کار رفته در این سیستم‌ها، از ماتریسی به نام ماتریس رتبه‌ها استفاده می‌کنند؛ اصطلاحات رایج برای این ماتریس Rating Database و Preference Database نیز هستند.

از فعل مصرف کردن در سیستم‌های توصیه‌گر، زمانی استفاده می‌کنند که کاربر توصیه ارائه شده را می‌پذیرد. به عبارتی وقتی کاربری پیشنهادی را که توسط سیستم به وی شده می‌پذیرد، می‌گوییم کاربر آن پیشنهاد را مصرف کرده، این پذیرش می‌تواند به شکل‌های مختلفی باشد، مثلاً کاربر، کتاب پیشنهادی را می‌خرد، سایت پیشنهادی را مرور می‌کند یا به شرکت خدماتی ای که به او پیشنهاد شده مراجعه می‌کند. ساختار ماتریس رتبه‌ها بدین گونه‌است که در آن، هر سطر ماتریس نمایانگر یک کاربر و هر ستون آن معرف کالایی (شئای) خاص است.

حال با مفهوم تابع سودمندی آشنا خواهیم شد که قصد داریم به کمک آن یک مدل کلی ریاضی از سیستم‌های توصیه‌گر را نیز ارائه دهیم.

مزایای سامانه‌های پیشنهادگر

حجم فراوان و روبه رشد اطلاعات بر روی وب و اینترنت، فرایند تصمیم‌گیری و انتخاب اطلاعات، داده یا کالاهای مورد نیاز را، برای بسیاری از کاربران وب دشوار کرده‌است. این موضوع، خود انگیزه‌ای شد تا محققین را وادار به پیدا کردن راه‌حلی برای رویارویی با این مشکل اساسی عصر جدید که با عنوان سرریز داده‌ها شناخته می‌شود کند. برای رویارویی با این مسئله تاکنون دو رویکرد مطرح شده‌اند، اولین رویکردی که به کار گرفته شد استفاده از دو مفهوم بازیابی اطلاعات و تصفیه‌سازی اطلاعات بود. عمده محدودیتی که این دو مفهوم در ارائه پیشنهادها دارند، این است که برخلاف توصیه‌گرهای انسانی (مثل دوستان، اعضای خانواده و …)، این دو روش قادر به تشخیص و تفکیک اقلام با کیفیت و بی کیفیت، در ارائه پیشنهاد برای یک موضوع یا کالا، نیستند. مشکل مذکور، موجب شد تا رویکرد دومی تحت عنوان سیستم توصیه‌گر پدید آید. این سیستم‌های جدید، مشکل سیستم‌های موجود در رویکرد اولیه را حل کرده‌اند. ظرفیت رایانه‌ها در فراهم آوردن توصیه‌ها تقریباً از همان اوایل تاریخ‌چه رایانه‌ها شناخته شد. گراندی، یک کتابدار کامپیوتری گامی اولیه به سمت سامانه‌های توصیه‌گر خودکار بود. این کتابدار یک توصیه‌گر نسبتاً ساده و اولیه بود که کاربران را به قالب‌هایی بر اساس مصاحبه کوتاه با استفاده از اطلاعات مستقیم‌کدشده(hard-coded) دربارهٔ سلایق کتاب قالب‌های مختلف گروه‌بندی می‌کرد تا توصیه‌ها را تولید کند، ولی این کار ورود اولیه مهم به فضای سامانه‌های توصیه‌گر قلمداد می‌شود.

در اوایل دهه نود میلادی، تکنیک پالایش مشارکتی به عنوان راه‌حلی برای مدیریت فضای اطلاعات بسیار زیاد آنلاین به وجود آمدند. تپستری Tapestry یک سامانه پالایش مشارکتی دستی بود. این سامانه به کاربر اجازه انجام پرس‌وجو برای آیتم‌های موجود در یک حوزه اطلاعاتی مانند ایمیل بر اساس عقاید و اقدامات دیگر کاربران می‌داد (همه ایمیل‌هایی که از طرف John فوروارد شده‌اند را به من نشان بده). این‌کار مستلزم تلاش از طرف کاربرانش بود ولی به آن‌ها اجازه کنترل واکنش‌های خوانندگان قبلی یک قسمت از مکاتبات را می‌داد تا میزان ارتباطش با آن‌ها را تعیین کند. خیلی زود بعد از سامانه‌های خودکار پالایش مشارکتی، مکان‌یابی خودکار عقاید مرتبط و تجمع آن‌ها برای دادن توصیه مطرح شد. GroupLens از این تکنیک برای تعیین کردن مقاله‌های Usenet که احتمال دارد مورد علاقه کاربر خاصی باشد استفاده کرد. کاربران تنها نیاز داشتند تا نمره‌دهی یا دیگر اقدامات قابل مشاهده انجام دهند. سامانه این‌ها را با نمره‌ها یا اقدامات کاربران دیگر ترکیب می‌کرد تا نتایج شخصی‌شده تولید کند. با این سامانه‌ها، برای دریافت پیشنهادها، کابران نه قادرند هیچ اطلاعات مستقیمی از عقاید دیگر کاربران بدست بیاورند و نه نیازی دارند تا بدانند کاربران یا آیتم‌های دیگر سامانه چه‌چیزهایی هستند.

طی این دوره، سامانه‌های توصیه‌گر و پالایش مشارکتی تبدیل به موضوعی مورد علاقه در بین محققین حوزه‌های تعاملات انسان-رایانه، یادگیری ماشین و بازیابی اطلاعات شدند. این علاقه منجر به ایجاد تعدادی سامانه توصیه‌گر برای زمینه‌های مختلفی شد از جمله Ringo برای موسیقی، توصیه‌گر ویدیو BellCore برای فیلم‌ها و Jester برای لطیفه‌ها شد. خارج از دنیای رایانه، حوزه بازاریابی توصیه‌ها را برای توانایی‌شان در افزایش فروش و بهبود تجربه مشتریان آنالیز کرده‌است.

در اواخر دهه نود میلادی، پیاده‌سازی‌های تجاری فناوری توصیه‌گرها شروع به ظهور کردند. شاید معروف‌ترین کاربرد فناوری‌های سامانه‌های توصیه گر وب‌سایت Amazon.com باشد. بر اساس تاریخ‌چه خرید، تاریخ‌چه بازدید و آیتمی که کاربر در حال مشاهده آن است آن‌ها به کاربر آیتم‌هایی را توصیه می‌کنند تا برای خرید در نظر بگیرد. از زمان به‌کارگیری توسط آمازون، فناوری توصیه، اغلب بر اساس پالایش مشارکتی، در بسیاری از سامانه‌های تجارت الکترونیک و آنلاین تعبیه شده‌است. یک انگیزه قابل ملاحظه برای انجام اینکار افزایش حجم فروش است، مشتریان ممکن است کالایی را بخرند اگر آن کالا به آن‌ها پیشنهاد شود ولی درغیراینصورت ممکن است آن کالا را نخرند. شرکت‌های بسیاری مانند NetPerceptions و Strands بخاطر فراهم کردن فناوری و خدمات توصیه به خرده‌فروشان آنلاین به وجود آمده‌اند.

جعبه ابزار تکنیک‌های توصیه گر به چیزی بیش از پالایش مشارکتی گسترش یافته‌اند و شامل رویکردهای محتوامحور(Content-Based) بر اساس متدهای بازیابی اطلاعات، استنتاج بیزی (Bayesian Inference) و استدلال مورد محور (Case-Based Reasonong) است. این متدها به جای یا درعوض الگوهای نمره دهی کاربران، محتوا یا ویژگی‌های اصلی آیتم‌هایی که قرار است توصیه شود را در نظر می‌گیرند. با به بلوغ رسیدن استراتژی‌های توصیه مختلف، سامانه‌های توصیه‌گر ترکیبی (Hybrid Recommender Systems) نیز ظهور یافته‌اند و الگوریتم‌های مختلفی را در سیستم‌های مرکبی ترکیب کرده‌اند که بر اساس قدرت الگوریتم‌های تشکیل‌دهنده‌شان ایجاد شده‌اند. البته در کنار رویکردهای محتوا محور، پالایش مشارکتی، هم روش تکی و هم ترکیب‌شده‌اش به عنوان روشی مؤثر همچنان مطرح هستند. زمانی که Netflix جایزه Netflix Prize را در سال ۲۰۰۶ به منظور بهبود بخشیدن وضعیت توصیه‌های فیلمش برقرار کرد، تحقیق بر روی الگوریتم‌های سامانه‌های توصیه‌گر توجه بسیاری را به خودش جلب کرد. هدف این رقابت ساختن یک الگوریتم توصیه‌گری بود که بتواند الگوریتم CineMatch که متعلق به خود Netflix بود را با ۱۰٪ بهبود در آزمایش‌ها آفلاین شکست دهد. این امر موجب ایجاد خروشی از اقدامات شد، هم در بین محیط آکادمیک و هم در بین سایر علاقمندان. جایزه یک میلیون دلاری ارزشی را که فروشندگان برای دقت توصیه‌ها قائل هستند نشان می‌دهد.

سامانه‌های پیشنهادگر چه کاربردهایی دارند؟

سیستم‌های پیشنهادگر در حوزه‌های مختلفی استفاده می‌شوند که از آن جمله باید به تجارت الکترونیک (برای توصیه محصولات و خدمات مختلف)، اینترانت‌های بنگاهی (برای پیدا کردن افراد خبره در یک زمینه خاص یا افرادی که در رویارویی با شرایط مشابه، تجاربی کسب کرده و راه حل‌هایی یافته‌اند (بیشتر داخل یک سازمان کاربرد دارد)، کتابخانه دیجیتال (پیدا کردن کتاب، مقاله و...)، کاربردهای پزشکی (انتخاب پزشک متناسب با شرایط (مکان، نوع بیماری، زمان و …) بیمار، انتخاب دارو و...)، مدیریت ارتباط با مشتری CRM (برای ارائه راهکارهایی برای حل مشکلات تولیدکننده و مصرف‌کننده در زنجیره تأمین) و نمونه‌های مشابه اشاره کرد.

انواع سامانه‌های توصیه‌گر

سامانه‌های توصیه‌گر به‌طور کلی به سه دسته تقسیم می‌شوند؛ در رایج‌ترین تقسیم‌بندی، آن‌ها را به سه گروه ۱. محتوا محور ۲. دانش محور و ۳. صافی‌سازی تجمعی، تقسیم می‌کنند، که البته گونه چهارمی تحت عنوان Hybrid RS هم برای آن‌ها قائل می‌شوند.

یک رویکرد به سیستم‌های توصیه‌گر، استفاده از الگوریتم‌های CF یا صافی‌سازی تجمعی است. در این رویکرد به جای استفاده از محتوای (Content) اقلام، از نظرات و رتبه‌بندی‌های انجام شده توسط کاربران برای ارائه پیشنهاد، استفاده می‌شود. مشکل اصلی استفاده از این رویکرد، مشکل شروع سرد (Cold Start problem) است که برای کاربران جدید بروز می‌کند که در سیستم ثبت نام می‌کنند و سیستم هیچ اطلاعاتی از نظرات یا علایق کاربر ندارد (New User problem). در چنین شرایطی، سیستم‌ها معمولاً از یادگیری فعال (Active Learning) یا استفاده از ویژگی‌های شخصیتی کاربر، برای حل مشکل استفاده می‌کنند. در روش محتوا محور، اقلام پیشنهادی، به این دلیل که با اقلامی که کاربر فعال (کاربری که قرار است. به او توصیه کنیم) نسبت به آن‌ها ابراز علاقه کرده‌است شباهت‌هایی دارند، به کاربر توصیه می‌شوند ولی در CF، لیست اقلام پیشنهادی، بر اساس این اصل که، کاربرانی، مشابه کاربر فعال، از آن‌ها رضایت داشته‌اند تهیه می‌شود. از این رو واضح است که در روش محتوامحور، تمرکز بر روی یافتن شباهت بین اقلام بوده، در حالی که در CF، تمرکز روی یافتن شباهت بین کاربران است؛ بدین ترتیب که پیشنهادها در CF، بر اساس تشابه رفتاری کاربر فعال با کاربران دیگر صورت می‌گیرد و نه بر اساس تشابه ویژگی کالاهای پیشنهادی با ویژگی‌های کالاهای مورد علاقه وی (کاربر فعال). رویکرد محتوا محور یکی از روش‌های مؤثر برای حلی نوعی از مشکل شروع سرد است که برای کالاهای (آیتم‌های) جدید رخ می‌دهد (New Item problem) که به تازگی به لیست سیستم اضافه شده‌اند و هیچ کاربری در مورد آن‌ها نظری نداده است. در چنین حالتی رویکرد صافی‌سازی تجمعی نمی‌تواند این کالاها را به کاربران توصیه کند.

اما گونه سوم این سیستم‌ها را با نام سیستم‌های دانش محور می‌شناسند. این سیستم‌ها براساس ادراکی که از نیازهای مشتری و ویژگی‌های کالاها پیدا کرده‌اند، توصیه‌هایی را ارائه می‌دهند. به عبارتی در این گونه از سیستم‌های توصیه‌گر مواد اولیه مورد استفاده برای تولید لیستی از پیشنهادها، دانش سیستم در مورد مشتری و کالا است. سیستم‌های دانش محور از متدهای مختلفی که برای تحلیل دانش، قابل استفاده هستند بهره می‌برند که متدهای رایج در الگوریتم‌های ژنتیک، فازی، شبکه‌های عصبی و … از جمله آنهاست. همچنین، در این گونه سیستم‌ها از درخت‌های تصمیم، استدلال نمونه‌محور و … نیز می‌توان استفاده کرد. یکی از رایج‌ترین متدهای تحلیل دانش درسیستم‌های توصیه‌گر دانش محور ،CBR یا روش استدلال نمونه‌محور است. گونه چهارم سیستم‌های ترکیبی هستند. طراحان این نوع سیستم‌ها دو یا چند گونه از انواع سه‌گانه مذکور را غالباً به دو منظور با هم ترکیب می‌کنند؛ ۱- افزایش عملکرد سیستم ۲- کاهش اثر نقاط ضعفی که آن سیستم‌ها وقتی به تنهایی به کار گرفته شوند، دارند. از میان سه روش موجود (CF و CB و KB)، غالباً روش CF یک پای ثابت این ترکیبات است.

ماهنامه شبکه را از کجا تهیه کنیم؟
ماهنامه شبکه را می‌توانید از کتابخانه‌های عمومی سراسر کشور و نیز از دکه‌های روزنامه‌فروشی تهیه نمائید.

ثبت اشتراک نسخه کاغذی ماهنامه شبکه     
ثبت اشتراک نسخه آنلاین

 

کتاب الکترونیک +Network راهنمای شبکه‌ها

  • برای دانلود تنها کتاب کامل ترجمه فارسی +Network  اینجا  کلیک کنید.

کتاب الکترونیک دوره مقدماتی آموزش پایتون

  • اگر قصد یادگیری برنامه‌نویسی را دارید ولی هیچ پیش‌زمینه‌ای ندارید اینجا کلیک کنید.

ایسوس

نظر شما چیست؟