

Unreal Engine 4
for Beginners

David Nixon

Unreal Engine 4 for Beginners

Copyright © 2017 David Nixon

All rights reserved.

No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the
author, except as provided by United States copyright law.

Limit of Liability / Disclaimer of Warranty: The author
makes no representations or warranties with respect to
the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales
representatives or written sales materials. The advice and
strategies contained herein may not apply or be suitable
for your situation. You should consult with a professional
where appropriate. The accuracy and completeness of the
information provided herein and the opinions stated
herein are not guaranteed or warranted to produce any
particular results, and the advice and strategies contained
herein are not suitable for every individual. By providing
information or links to other companies or websites, the
publisher and the author do not guarantee, approve or

endorse the information or products available at any
linked websites or mentioned companies, or persons, nor
does a link indicate any association with or endorsement
by the publisher or author. This publication is offered or
sold with the understanding that neither the publisher nor
the author is engaged in rendering legal, accounting or
other professional service. If legal advice or other expert
assistance is required, the services of a competent
professional should be sought. Neither the publisher or
the author shall be liable for any loss or loss of profit or
any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

T a b l e o f C o n t e n t s | 4

CONTENTS

CHAPTER 1 – GETTING STARTED

1.1 Licensing ... 19

1.2 Registration .. 21

1.3 Download & Installation ... 24

1.4 Chapter 1 Quiz .. 26

Answers .. 27

2.1 Projects ... 29

Unreal Project Browser .. 29

Projects Tab .. 30

New Project Tab ... 32

2.2 Levels .. 36

Creating, Opening & Saving Levels 37

Playing a Level .. 40

2.3 Actors.. 41

The Static Mesh Actor .. 42

Geometry Brushes .. 43

Materials ... 45

The Light Actor ... 46

Summary of Actors ... 47

T a b l e o f C o n t e n t s | 5

2.4 Chapter 2 Quiz .. 48

Answers .. 50

3.1 Level Editor Overview ... 53

Unreal Engine vs the Unreal Editor 53

Unreal Editor vs the Level Editor 54

Panels of the Level Editor ... 54

Customizing the Interface... 60

3.2 Place Mode ... 62

Place Mode Tabs ... 63

3.3 Navigating Within the Viewport 66

Mouse Navigation ... 66

WASD Navigation.. 67

Focusing .. 67

Maya Navigation ... 68

Camera Speed ... 69

3.4 Moving, Rotating, and Scaling Actors 70

Move Tool ... 71

Rotate Tool ... 74

Scale Tool .. 75

World Space vs Local Space .. 76

3.5 Snapping ... 79

End Key ... 79

T a b l e o f C o n t e n t s | 6

Surface Snapping .. 79

Grid Snapping ... 83

Snap Size ... 84

Grid Units .. 85

Rotation Snapping .. 86

Scale Snapping .. 86

3.6 Different Ways to View Your Level 88

Immersive Mode .. 88

View Modes .. 88

Lit Mode.. 89

Unlit Mode .. 90

Wireframe Mode .. 91

Orthographic Views .. 91

Show Flags .. 94

Game View ... 96

Piloting Actors Within the Viewport 96

3.7 Content Browser ... 98

Sources Panel and Asset Window 98

Back Button and Forward Button 100

Breadcrumbs .. 100

Add New Button ... 101

Import Button ... 103

T a b l e o f C o n t e n t s | 7

Save All Button ... 103

View Options .. 103

Tiles vs List vs Columns ... 104

Show Folders .. 105

Show Developers Folders 105

Show Plugins Content ... 106

Show Engine Content ... 106

Show Collections... 106

Thumbnail Options ... 109

Content Browser Windows ... 110

3.8 Details Panel ... 113

Property Matrix .. 114

View Options .. 115

Transform Category .. 117

Relative vs World .. 119

Mobility .. 120

3.9 World Outliner .. 121

World Outliner Data ... 122

Grouping Actors .. 123

Organizing and Finding Actors 127

3.10 Chapter 3 Quiz .. 129

Answers .. 131

T a b l e o f C o n t e n t s | 8

4.1 Static Meshes ... 134

Replacing the Mesh of a Static Mesh Actor 135

Physics .. 136

4.2 Brushes ... 140

Brushes vs Meshes ... 140

Brush Settings ... 142

Brush Type .. 143

Brush Shape .. 144

Size Properties .. 144

Sides Properties .. 145

Hollow Property .. 145

Stair Brushes ... 146

4.3 Materials ... 153

Apply Material to All Surfaces 154

Surface Materials Category .. 155

Elements ... 156

Textures .. 157

Surface Properties Category 158

Material Scaling .. 160

4.4 Lights .. 161

Overview of Light Types ... 161

Building the Lighting ... 163

T a b l e o f C o n t e n t s | 9

Directional Light ... 164

Intensity .. 165

Light Color... 166

Temperature ... 168

Affects World .. 168

Cast Shadows .. 168

Indirect Lighting Intensity 169

Point Light ... 169

Spot Light .. 172

Sky Light .. 173

4.5 Atmospheric Fog ... 175

Sun Disc .. 176

Atmospheric Fog Properties 177

4.6 Player Start Actor .. 181

4.7 Components ... 184

Adding Components ... 184

Component Structure ... 186

Rotating Movement Component 187

4.8 Volumes .. 189

Blocking Volumes ... 190

Trigger Volumes .. 190

Pain Causing Volumes ... 192

T a b l e o f C o n t e n t s | 10

Kill ZVolume .. 194

Physics Volume ... 195

4.9 Chapter 4 Quiz .. 198

Answers .. 200

5.1 Introduction to Blueprints .. 203

Level Blueprint vs Blueprint Classes 203

Level Blueprint Editor ... 205

Event Graph .. 205

Nodes.. 206

Pins and Wires .. 208

Adding Nodes ... 209

Compiling .. 211

Simple Blueprint Example ... 211

5.2 Variables ... 213

Data Types .. 214

Get Node .. 217

Set Node ... 218

Default Value .. 219

Updated Blueprint Example .. 220

Variable Properties ... 221

5.3 Arrays.. 224

ForEachLoop Node ... 225

T a b l e o f C o n t e n t s | 11

Add Node .. 226

Insert Node ... 227

Set Array Element Node ... 228

Removing Elements From an Array 229

Contains Item Node .. 230

Find Item Node ... 231

Length Node & Last Index Node 231

5.4 Functions .. 233

Function I/O .. 234

Function Example ... 236

Advantages of Using Functions 237

Function Properties .. 239

5.5 Flow Control ... 241

Branch Node ... 241

Do N Node .. 242

DoOnce Node ... 243

DoOnce MultiInput Node ... 244

FlipFlop Node .. 245

ForLoop Node ... 246

ForLoopWithBreak Node .. 246

Gate Node .. 247

MultiGate Node .. 248

T a b l e o f C o n t e n t s | 12

Retriggerable Delay Node ... 250

Sequence Node ... 250

WhileLoop Node ... 251

Switches .. 252

5.6 Accessing Actors Within Blueprints 254

Getting a Reference to an Actor 255

Creating an Event From an Actor 256

5.7 Blueprint Classes ... 259

Blueprint Class Example ... 260

Instances ... 261

Editable Variables ... 261

5.8 Timelines .. 264

Tracks and Keys .. 265

Timeline Example ... 266

Other Types of Tracks ... 269

Add an Existing Curve to a Track 269

Timeline Options .. 270

Timeline Node Pins ... 271

5.9 Chapter 5 Quiz .. 273

Answers .. 275

6.1 Game Modes .. 278

Create a New Game Mode Blueprint 278

T a b l e o f C o n t e n t s | 13

Game Mode Properties .. 280

Assigning Game Modes .. 284

6.2 Pawns ... 287

Adding a Static Mesh Component to a Pawn 288

Adding a Camera Component to a Pawn 289

Adding a Spring Arm Component to a Pawn 290

6.3 Characters ... 292

Character Components ... 292

Character Movement Component 293

Creating a Jump Input ... 296

6.4 Controllers .. 297

Advantages of Using a Controller 297

Adding Input to a Player Controller 298

6.5 Input Mapping .. 301

Action Mappings vs Axis Mappings 301

Creating New Input Mappings 303

6.6 Setting Up Basic Character Movement 305

Setting Up the Input Mapping 305

Using Input Mappings in Blueprints 309

Setting Up the Look Movements 312

Setting Up the Walking Movements 314

6.7 Chapter 6 Quiz .. 317

T a b l e o f C o n t e n t s | 14

Answers .. 318

7.1 Collisions Overview ... 320

Hit Events & Overlap Events 320

Collision Presets .. 321

Collision Enabled Property 321

Object Type Property .. 322

Trace Responses ... 325

Collision Preset Property .. 325

Can Character Step Up On Property 326

7.2 Causing Damage Due to Collisions 328

Event Hit Node.. 328

Apply Damage Node ... 330

Damage Example .. 332

Making a Character Temporarily Invincible 335

Destroying a Character ... 336

7.3 Chapter 7 Quiz .. 338

Answers .. 339

8.1 UMG Overview ... 341

History of Unreal Interfaces.. 341

Widget Blueprints ... 342

Widget Blueprint Editor .. 345

8.2 Root Widget .. 351

T a b l e o f C o n t e n t s | 15

Color and Opacity ... 351

Foreground Color.. 353

Is Focusable .. 354

Background Property .. 355

8.3 Canvas Panel ... 357

Canvas Panel Slot Properties 357

Anchors ... 358

Size to Content ... 362

ZOrder... 362

8.4 Common Widget Properties 364

Behavior Category .. 364

Performance Category .. 366

Render Transform Category 367

Navigation Category ... 372

8.5 Visual Designer ... 374

8.6 Text Widget .. 378

8.7 Button Widget .. 382

8.8 Border Widget & Image Widget 388

8.9 Progress Bar Widget ... 391

8.10 Check Box Widget ... 395

Check Box Properties .. 395

Checking the State of the Check Box 398

T a b l e o f C o n t e n t s | 16

8.11 Horizontal Box & Vertical Box 402

8.12 Grid Panel & Uniform Grid Panel 406

Uniform Grid Panel ... 406

Grid Panel ... 408

Grid Slot Properties .. 409

8.13 Chapter 8 Quiz .. 412

Answers .. 414

9.1 Audio Overview & Sound Waves 417

Ambient Sound Actor ... 418

Sound Wave Properties .. 421

Play Sound Nodes ... 426

9.2 Sound Cues ... 429

Audio Nodes ... 432

9.3 Attenuation .. 442

Attenuation Curves ... 445

Spatialization .. 447

Attenuation Hierarchy .. 448

9.4 Importing and Converting Audio 451

Audacity .. 452

9.5 Chapter 9 Quiz .. 455

Answers .. 457

T a b l e o f C o n t e n t s | 17

10.1 Downloading Content From the Epic Games Launcher

 .. 460

Learn Tab .. 460

Marketplace Tab ... 462

Vault ... 463

10.2 Importing 3D Objects From the Internet 464

Tf3dm.com ... 464

Cgtrader.com .. 467

Importing .fbx Files ... 469

10.3 Chapter 10 Quiz .. 472

Answers .. 473

C h a p t e r 1 – G e t t i n g S t a r t e d | 18

1
Getting Started

1 . 1 L i c e n s i n g | 19

1.1 Licensing

In this book, you will be learning how to use what many
consider to be the best game engine in the industry. The
Unreal Engine has been used to create several blockbuster
games and game franchises, including BioShock, Gears of
Wars, Splinter Cell, Rainbow 6, Borderlands, Dishonored,
Mass Effect, and many more.

The biggest disadvantage of the Unreal Engine was that,
for most of its existence, it was too expensive for anyone
but large companies and wealthy individuals. Epic Games,
the creators of the Unreal Engine, realized that because of
this, there were huge numbers of budding game
developers starting their game development lives getting
used to competing engines. These other engines were
being offered for free, in exchange for a percentage of any
profits made from the games.

Due to this increasing competition, Epic Games decided to
adopt a similar business model. In March 2015, the Unreal
Engine became completely free to download and use. The
only stipulation is that if you create something on it that
makes more than $3000 in a single quarter (meaning a
quarter of a year), then you have to pay a 5% royalty to
Epic Games for any sales above the $3000.

Now, for the first time ever, the Unreal Engine is accessible

1 . 1 L i c e n s i n g | 20

to amateurs, hobbyists and indie developers, and not just

the major game studios of the world.

1 . 2 R e g i s t r a t i o n | 21

1.2 Registration

You will need to register an account with Epic Games, the
creators of the Unreal Engine, in order to download and
install it. To register an account, perform the following
steps:

1. Open a web browser and go to unrealengine.com.

2. Look for a blue button that says “Get Unreal” and
click on it. You should now be taken to a screen
where you can register for an account with Epic
Games.

1 . 2 R e g i s t r a t i o n | 22

Figure 1.2.1 – The form to register an account with
Epic Games

3. Enter your First and Last name.

4. Choose a display name. This will be used if you post
on the Epic Games forums.

1 . 2 R e g i s t r a t i o n | 23

5. Enter an email address. Choose a password to use
that is at least 7 characters and contains at least 1
number and 1 letter.

6. Once you have read and agree to the Terms of
Service, click on the checkbox indicating you have
done so.

7. Click on the large button that says “Sign Up.”

8. You will be given an End User License Agreement to
read. Once you have read and agree to it, check the
checkbox indicating you have done so, then click on
the “Accept” button.

1 . 3 D o w n l o a d & I n s t a l l a t i o n | 24

1.3 Download & Installation

After completing registration, you will be taken to a screen
where you can download the installer for something called
the Epic Games Launcher. Perform the following steps:

1. Click on the large “Download” button to begin the
download.

2. Once the download has finished, open the file that
was downloaded. The filename should start with
“EpicGamesLauncherInstaller” and the file extension
will be .msi. Choose a folder path where you want to
install the launcher and then click on the “Install”
button.

3. Once it finishes installing, it should open
automatically. If it doesn’t, look for an Epic Games
Launcher shortcut on your desktop and double-click
on that. It will ask you for the email and password you
provided during registration. Enter that information
and click “Sign In.”

4. Now you will be on the home screen of the Epic
Games Launcher. From here, click on the “Unreal
Engine” tab. In that tab, click on the yellow button
that says “Install Engine.”

1 . 3 D o w n l o a d & I n s t a l l a t i o n | 25

Figure 1.3.1 – The Install Engine button

5. You will be given another End User License
Agreement to read and if you agree with it, click in
the checkbox, then click “Accept.” The Launcher will
now begin to download the latest version of the
Engine. Once the download completes, the Launcher
will automatically install it.

6. Once the installation is complete, the yellow button
will now say “Launch,” and if you click on it, that will
launch the Engine.

1 . 4 C h a p t e r 1 Q u i z | 26

1.4 Chapter 1 Quiz

1. What is the name of the company that created and
owns the Unreal Engine?

2. If you make $2500 in a single quarter from a game
you developed using the Unreal Engine, how much of
a royalty fee do you owe for that quarter?

3. If you make $4000 in a single quarter from a game
you developed using the Unreal Engine, how much of
a royalty fee do you owe for that quarter?

4. True or False: You must register an account in order
to download and install the Unreal Engine.

5. What is the name of the application that launches the

Unreal Engine?

1 . 4 C h a p t e r 1 Q u i z | 27

Answers

1. Epic Games

2. $0. You only owe a royalty on sales above $3000 for a
quarter.

3. $50. You must pay a 5% royalty on sales above $3000
for a quarter. 4000 - 3000 = 1000 * .05 = 50

4. True

5. Epic Games Launcher

C h a p t e r 2 – B a s i c C o n c e p t s | 28

2
Basic Concepts

2 . 1 - P r o j e c t s | 29

2.1 Projects

In the context of the Unreal Engine, a project is the unit
that stores all the information for an individual game.
Meaning each game you create will be stored in its own
project.

For example, for a first-person shooter game, you might
have a project called “ShooterProject.” If you wanted to
work on another game, a puzzle game, you would create a
new project and perhaps call it “PuzzleProject.” So if you
are working on five different games, you should have five
different projects, one for each game.

Unreal Project Browser

To launch the Unreal Project Browser:

1. Go to your desktop and double-click on the Epic
Games Launcher shortcut that you created during
installation.

2. Click the yellow “Launch” button in the upper-left
corner.

The Unreal Project Browser is where you can open your
existing projects or create new ones. It is divided into two
tabs.

2 . 1 - P r o j e c t s | 30

Projects Tab

The first tab is simply called Projects and will be selected
by default whenever the Project Browser first opens. This
tab is for existing projects. It contains thumbnail images of
all existing projects that the Project Browser was able to
find, which would include any projects within the
installation directory, and any projects you previously
created or opened using this installation of Unreal.

Figure 2.1.1 – The Projects tab of the Unreal Project
Browser

2 . 1 - P r o j e c t s | 31

To open a project, simply double-click on it, or select it and
click the “Open” button in the bottom-right corner, and it
will open the Unreal Editor and load that project into it.

If you have lots of projects and need help finding one, you
can enter all or part of the name of the project in the
search bar at the top and it will narrow down the results
based on what you entered.

As previously mentioned, the Projects tab will only list the
projects that the Project Browser could find. For example,
if you were to download an existing project from the
Internet onto your desktop, then the Project Browser
won’t know about it until you open that project. This is
what the “Browse” button in the bottom-right corner is
for. In this situation, you would need to click the Browse
button and browse to that project file on your desktop and
open it from there. Once you open it, from then on, the
Project Browser will know about it and it will appear in the
list.

In the upper-right corner of the Project Browser there are
two buttons – Refresh and Marketplace. The Refresh
button is used to refresh the list of project thumbnails.
Again, let’s say that you download a project from the
Internet, but instead of saving it to the desktop, you saved
it in the installation directory instead. In that scenario, the
Project Browser will be able to find it. However, it won’t
appear in the list until you click the Refresh button.

2 . 1 - P r o j e c t s | 32

If you click the Marketplace button, this will take you to
the Marketplace tab of the Epic Games Launcher where
you can download existing environments, objects,
characters, etc. either for free or for a price.

In the bottom-left corner is a checkbox labeled “Always
load last project on startup.” If you check this, the next
time you hit the Launch button in the Games Launcher, it
will skip the Project Browser altogether and automatically
open the last project you worked on. This is useful if you
plan to be working on only one project for several days,
weeks, or months at a time. It will allow you to skip this
step every time.

If you do this and then want to open a new or different
project, you can still do that through the File menu of the
Unreal Editor. If you later decide you do want the Project
Browser to open on launch, you can change this setting in
the Editor Preferences.

New Project Tab

The second tab is the New Project tab. This tab has two
tabs itself – a Blueprint tab and a C++ tab. On the Blueprint
tab, there are twelve options to choose from – a blank
project, and eleven template projects.

2 . 1 - P r o j e c t s | 33

Figure 2.1.2 – The New Project tab of the Unreal Project
Browser

The templates are all based around common game types.
For example, the First Person template will load with
several features common to first-person games already
hooked up and ready to go. For a racing game, the Vehicle
template would make a good choice. If you don’t choose
these features here, you still have the option to add them
in later if you want. You could choose a blank project to
start with and then add in “First Person” features later,
within the Editor.

2 . 1 - P r o j e c t s | 34

Towards the bottom of the tab, there are three different
settings available to configure. You also have the option to
change any of these settings later within the Editor.

Figure 2.1.3 – Settings available on the New Project tab

First, you can choose the overall class of hardware that
you are planning to develop your game for. You can
choose between Desktop/Console for developing
computer and console games and Mobile/Tablet for
developing phone and tablet games.

Next, you have the option of choosing between Maximum
Quality and Scalable 3D or 2D. In general, you would pair
the Desktop/Console setting with Maximum Quality, and
Mobile/Tablet with Scalable 3D or 2D, which makes this
setting somewhat redundant. However, if you wanted to,
for example, create a desktop game that could operate
using minimal resources, you could pair the “Desktop” and
“Scalable” settings together.

Lastly, you have the option of choosing between With
Starter Content and No Starter Content. Choosing the
blank template will start you off with no code, but if you

2 . 1 - P r o j e c t s | 35

wanted to start with a truly empty project you would
choose the blank template along with the No Starter
Content setting. However, the With Starter Content
setting is useful as it will load into your project, from the
start, a lot of basic content you can use to get you going
such as materials, basic shapes, etc.

Finally, when you have selected the template you want to
use and have chosen your settings, you just need go to the
bottom of the window and choose where you want the
project to be saved, give it a name, and click the Create
Project button in the bottom-right. This will open the
Unreal Editor and load a new project into it based on the
settings you chose.

2 . 2 - L e v e l s | 36

2.2 Levels

A Level, in the context of the Unreal Engine, can be
defined as a collection of objects and their properties that
together define an area of gameplay.

That’s the technical definition, but an easy way to visualize
this is, if you’ve ever played a fighting game such as Super
Smash Bros, or SoulCalibur, or Mortal Kombat, you know
that each match takes place in a different location. The
first match might take place in a palace and the next one
in a forest, and so on. Each of these different locations
would be its own Level within the Unreal Editor.

Also, think of FPS games such as Call of Duty or Battlefield.
When you’re playing multiplayer, you might get asked to
choose a map for the match to take place in. Each of those
maps are their own Level.

Levels are loaded and unloaded into memory one-at-a-
time. So if you’re playing a game where you’re in a town,
and you can walk around the town and every time you
enter or exit one of the buildings in the town, the game
has to load; then that means that the outside of the town
is a single Level, and each building interior is its own Level.

A single game may consist of only one Level, but often will
consist of many Levels. Major releases often contain
hundreds of Levels.

2 . 2 - L e v e l s | 37

Creating, Opening & Saving Levels

To create a new Level, go to File > New Level, or use the
shortcut Ctrl+N.

Figure 2.2.1 – The File Menu

2 . 2 - L e v e l s | 38

You have the option of choosing between “Default” and
“Empty Level.” “Default” will start you off with some basic
stuff already added, including a platform, an atmosphere,
some lighting, etc. The “Empty Level” option will start you
off with a completely empty Level.

Figure 2.2.2 – You can choose between Default and Empty
Level when creating a new Level

To open an already existing Level, go to File > Open Level,
or use the shortcut Ctrl+O. From there, navigate through

2 . 2 - L e v e l s | 39

the Content folder to find the Level you want, then
double-click to open it.

There are multiple options available for saving. You can go
to File > Save to save it with its current name. Or you can
select “Save As,” and save it under a different name. If you
have multiple Levels that are unsaved, and want to save
them all, you can select “Save All Levels.”

In addition to Levels, it is possible to open and save other
Assets as well. An Asset is anything that can be used to
help develop your game that can be saved and opened.
For example, anything you can open or add to your game
within the Content Browser is an Asset.

If you want to open an existing Asset for editing, you
would select “Open Asset,” or use Ctrl+P, and then select
the Asset you want to open from the list.

To save everything you have open, including all Levels and
other Assets, select “Save All,” or simply press Ctrl+S. To
save only some of the files you have open, select “Choose
Files to Save…” and select which of the unsaved files you
want to save.

Finally, if you want to open a Level that you worked on
recently, it may be quicker to go down to “Recent Levels”
and select the Level from that list, rather than using the
“Open Level” dialog.

2 . 2 - L e v e l s | 40

Playing a Level

You can test your Levels directly in the Editor by clicking on
the Play button at the top of the screen. This will simulate
the Level immediately, without having to do a full build of
the game, so you can quickly test things as you develop
them.

Figure 2.2.3 – The Play Button

To view the Level fullscreen, or to exit fullscreen, press the
F11 key. To stop the simulation, press the Stop button at
the top of the screen.

2 . 3 - A c t o r s | 41

2.3 Actors

An Actor is any object that can be added to a Level.
Consider the objects on the left side of the Unreal Editor
when you first start a project. If you click on the cube, for
example, and drag it into the Level, it will become an Actor
within the Level.

Figure 2.3.1 – This cube is an Actor within the Level

Actors can be physical, visible objects within the Level,
such as the cube, but they don’t have to be. For example,
there is something called the Player Start Actor. Wherever

2 . 3 - A c t o r s | 42

this Actor is placed within the Level is where the player will
start when the Level begins. Even though the Player Start
Actor isn’t a physical object within the Level, it is still
considered to be an Actor.

The Static Mesh Actor

The Static Mesh Actor is one of the most common types of
Actors used to construct Levels in the Unreal Editor. If
you’re not familiar, “mesh” is a 3D modeling term, and
simply refers to a 3D object. When you’re playing a game,
pretty much every object you see in the game will be a
mesh. For example, you may see tree meshes, bird
meshes, table meshes, chair meshes, and so on.

Static meshes refer to meshes with no moving parts. For
example, the cube and the other geometric shapes in that
list.

In the Starter Content that comes with the Unreal Engine,
you have some Static Meshes in the form of furniture and
some basic architectural objects.

2 . 3 - A c t o r s | 43

Figure 2.3.2 – Some static meshes are included in the
Starter Content

So you have some Meshes to start with, but the vast
majority of meshes used in games are created in external
3D modeling applications, such as Maya, 3D Studio Max,
Blender, and so on, and then imported into the Unreal
Editor. If you’re not a 3D-modeling artist, don’t despair;
there is lots of great content available on the Internet for
you to use, for free or for a price, and the final chapter of
this book will show you where you can find some of that
content.

Geometry Brushes

A Geometry Brush, or simply “Brush” for short, is an Actor
used to represent 3D space. There is a Box Brush, a Cone
Brush, and so on. This is very similar to a Mesh, but there
are a few key differences. These differences will be
discussed in greater detail in a later chapter, so, for now,
just know the following:

2 . 3 - A c t o r s | 44

 Brushes are only used for basic geometric shapes
while Meshes can be crafted into objects with a high
level of detail.

 Brushes are useful for quick level design but are less
memory-efficient than Meshes. Therefore, Brushes
are generally used to prototype Levels early on, and
are then replaced with better-looking and better-
performing Meshes for the final project.

Figure 2.3.3 – A Box Brush

2 . 3 - A c t o r s | 45

Materials

Before moving on to the next Actor, you should know
about a property that is common to both Meshes and
Brushes - the Material of the Actor. A Material in Unreal
Engine is an Asset you can apply to a surface to make that
surface, and thus the geometry behind that surface, look
like it’s made out of a certain substance. For example, if
you apply a wood Material to a Cube Mesh, it will look like
a wooden cube.

Figure 2.3.4 – A wood Material has been applied to this
Cube Mesh

2 . 3 - A c t o r s | 46

Meshes that are imported into the Unreal Editor may
already have one or more Materials applied to them that
get imported in alongside them. But you can replace these
Materials if you wish.

The Light Actor

A Light Actor in the Unreal Engine is used to represent
visible light in the real world. Thanks to a lot of complex,
mathematical algorithms that the Unreal Engine uses, it
will behave much like light does in the real world. It will
make objects that it hits more visible, depending on the
intensity of the Light and the Material of the object. It will
reflect off the surface of objects and light up other objects
indirectly. It will cast a shadow if a visible, opaque object is
in its path, and so on.

Lights will be discussed in greater detail in a later chapter,
but for now, just know that Light Actors are used to
represent only the light itself, and not any of the objects
from which the light emanates from. For example, if you
wanted a working flashlight in your Level, you would need
to combine a Light Actor with a Static Mesh Actor that
looked like a flashlight. You would place the Light Actor at
one end of the flashlight to make it look like the light was
coming out of the flashlight.

2 . 3 - A c t o r s | 47

Summary of Actors

To summarize, an Actor is any object you can place and
move about your Level. Brushes are a type of geometric
Actor used to quickly prototype and structure a Level.
Static Meshes are a type of Actor that are used to
represent realistic looking objects in your Level. Materials
can be applied to the surfaces of Brushes and Static
Meshes to make them look as if they are made out of that
type of material. Lights are a type of Actor used to light the
whole thing up.

2 . 4 C h a p t e r 2 Q u i z | 48

2.4 Chapter 2 Quiz

1. In the Unreal Engine, what is the name of the unit that
stores all the information for an individual game?

2. Describe a scenario where would you need to use the

Browse button in the Project Browser to find a
project.

3. Describe a scenario where you would need to use the
Refresh button in order for a project to appear in the
Project Browser.

4. In the Unreal Engine, what can be defined as a
collection of objects and their properties that
together define an area of gameplay?

5. True or False: Major game releases rarely contain
hundreds of Levels.

6. Anything you can open or add to your game within
the Content Browser can be described as a what?

7. Any object that can be added to a Level is called a
what?

8. True or False: Only physical, visible objects within a
Level are considered Actors.

2 . 4 C h a p t e r 2 Q u i z | 49

9. What is a four-letter technical term for a digital 3D

object?

10. What do you call a mesh with no moving parts?

11. What kind of Actor, used to represent 3D space, is
useful for prototyping your Levels?

12. What is an Asset you can apply to a surface to make
that surface look like it’s made out of a certain
substance?

13. True or False: Light Actors are used to represent
objects that emit light.

2 . 4 C h a p t e r 2 Q u i z | 50

Answers

1. project

2. If you downloaded a project from the Internet and
saved it to a location other than Unreal’s installation
directory.

3. If you downloaded a project from the Internet and
saved it in Unreal’s installation directory.

4. Level

5. False. It is not uncommon for a major release to
contains hundreds of Levels.

6. Asset

7. Actor

8. False

9. mesh

10. static mesh

11. Brush

12. Material

2 . 4 C h a p t e r 2 Q u i z | 51

13. False. Light Actors are only used for the light itself.
You would use a mesh to represent the object that is
emitting the light.

C h a p t e r 3 – T h e L e v e l E d i t o r | 52

3
The Level Editor

3 . 1 L e v e l E d i t o r O v e r v i e w | 53

3.1 Level Editor Overview

This section will give a basic overview of the Level Editor
without going into too much detail. First, we will spend a
few moments discussing some terminology which can be
confusing.

Unreal Engine vs the Unreal Editor

The Unreal Engine is an application that is used to run
games. It’s a program that has algorithms for determining
how objects are rendered frame by frame, how lighting
should affect them, and so on. The Unreal Editor is an
application for creating games that can run on the Unreal
Engine. So that’s what you’re learning in this book - how to
create games with the Unreal Editor that can be played
using the Unreal Engine.

When you hit the Play button to play your game, the
Unreal Editor is using the Unreal Engine to run the game.
To summarize, the Unreal Editor is used for creating
games, while the Unreal Engine is used for running those
games.

3 . 1 L e v e l E d i t o r O v e r v i e w | 54

Unreal Editor vs the Level Editor

The Unreal Editor has several sub-editors within it, and
one of those sub-editors is the Level Editor. What can be
confusing about this, however, is that the Level Editor
essentially acts as the home screen for the Unreal Editor.
So the main window of the Unreal Editor is the Level Editor
itself. All of the other sub-editors will open in their own
separate windows. For example, if you double-click on a
Material, it will open the Material Editor in a separate
window.

Panels of the Level Editor

The large rectangle in the middle is the Viewport. The thin
strip above that is the Toolbar. At the bottom of the
screen is the Content Browser. On the left side of the
screen is the Modes Panel. On the right side of the screen
is the World Outliner at the top, and below that, the
Details Panel.

3 . 1 L e v e l E d i t o r O v e r v i e w | 55

Figure 3.1.1 – The panels of the Level Editor - 1. Viewport
2. Toolbar 3. Content Browser 4. Modes Panel 5. World
Outliner 6. Details Panel

Keep in mind that these panels can be moved and resized,
and also that this is just the default layout of the current
release and could change in future releases.

The Viewport is used to give you a visual representation of
your game. You will see a representation of the
environment you create, along with characters and objects
that players will see in the game. You will also be able to
see certain objects in the Viewport that won’t be visible
when playing the game, such as cameras, event triggers,

3 . 1 L e v e l E d i t o r O v e r v i e w | 56

and invisible barriers. You can also manipulate objects
directly through the Viewport.

Figure 3.1.2 – The Viewport

The Toolbar is a strip of buttons meant to give you quick
access to common and/or important functions, such as
saving, changing settings, or playing your game.

Figure 3.1.3 – The Toolbar

3 . 1 L e v e l E d i t o r O v e r v i e w | 57

The Content Browser is for storing and organizing content
that you can add to your game. This includes content such
as Meshes, Materials, music, sound effects, visual effects,
and more. Some types of content can be created directly
within the Unreal Editor. But you can also create content
outside of the Unreal Editor and then import it in. For
example, you could create a motorcycle using third-party
3D-modeling software, and then use the Content Browser
to import the motorcycle into your project. There is also a
lot of already made content available on the Internet, for
free or for a price, that you can download and then import
into the Content Browser.

Figure 3.1.4 – The Content Browser

The Modes Panel allows you to change the mode of the
Level Editor to various modes that make it easier to
perform certain tasks. These tasks include dragging and
dropping objects into your Level, adding color and texture
to those objects, modifying the geometry of those objects,
editing the landscape of your Level, and adding foliage,
meaning plant life, to your Level.

3 . 1 L e v e l E d i t o r O v e r v i e w | 58

Figure 3.1.5 – The Modes Panel

The World Outliner is used to list and group the objects in
your Level in a way that makes them easy to find when
you want to select and edit them.

3 . 1 L e v e l E d i t o r O v e r v i e w | 59

Figure 3.1.6 – The World Outliner

The Details Panel allows you to view and edit the details of
whatever object is currently selected, such as the object’s
size and location.

3 . 1 L e v e l E d i t o r O v e r v i e w | 60

Figure 3.1.7 – The Details Panel

Customizing the Interface

The Unreal Editor gives you a great deal of control over
how the interface looks. One thing you can do is resize the
individual panels. To do this, simply click on the edge

3 . 1 L e v e l E d i t o r O v e r v i e w | 61

between two panels and drag, and you can make them any
size you wish.

You also have the option to move panels around. If you
click on the tab of the panel and drag, you can drag it to
wherever you want on the screen.

You can also choose which panels are open at any given
time. To close a panel, simply click on the “X” on the right
side of the panel’s tab. To open a panel, go to the menu
bar, and under Window, select the panel you wish to
open.

Finally, you can choose to show or hide the tabs of each
panel. To hide the tab, right-click on it, and choose Hide
Tab. To show the tab, click on the yellow triangle in the
upper-left corner of the panel. You may want to have all
the tabs showing while you are still learning the names of
the panels, and then once you have them memorized,
close the tabs in order to have a little more screen room to
work with.

3 . 2 – P l a c e M o d e | 62

3.2 Place Mode

The Modes Panel has five different modes. To select the
mode you want to work in, simply click on one of the five
icons at the top of the Modes Panel, or hold down the
Shift key and press either the 1, 2, 3, 4, or 5 key depending
on which mode you want to select.

Figure 3.2.1 – The five modes of the Modes Panel

The first mode is called Place Mode. Place Mode can be
selected by pressing Shift+1 or by clicking on the first icon,
the one with the brown box and light bulb.

Place Mode is used to place Actors into your Level. The
Content Browser is also used for placing Actors but there
are a few key differences. Place Mode is used for simple,
common, generic Actors, while the Actors in the Content
Browser tend to be more complex. Also, the list of Actors
in Place Mode remains static. You cannot add new Actors
to the Place Mode panel, while in the Content Browser,
you can import content created outside of the Unreal
Editor into your project or create new ones.

3 . 2 – P l a c e M o d e | 63

To use Place Mode to place an Actor into a Level, simply
click on the Actor and drag it into the Viewport. To delete
an Actor from the Level, press the Delete key when that
Actor is selected.

Place Mode Tabs

Place Mode is divided into tabs of different groupings of
Actors. Starting with the Basic tab, the Basic tab simply
contains 10 of the most commonly used Actors.

Figure 3.2.2 – The tabs of Place Mode

Above the Basic tab is the Recently Placed tab. This will be
a list of Actors that you have recently placed into your
Level. This is useful when you are going to be working with

3 . 2 – P l a c e M o d e | 64

a small set of the same types of Actors for a while. In that
scenario you would be able to just keep the Recently
Placed tab open, and drag and drop everything from there,
without having to switch between all of the other tabs.

Below the Basic tab is the Lights tab. As mentioned earlier
in the book, a Light in the Unreal Engine is an Actor that is
meant to represent the light projecting from some source.

Then we have Visual Effects, which as its name suggests,
contains Actors that add a variety of effects to your Level.

The BSP tab contains the Geometry Brushes that were
briefly introduced earlier. BSP stands for “Binary Space
Partitioning” but that’s not important to know. Just know
that this is the Brushes tab.

The Volumes tab is used to define gameplay volumes. A
Volume is a 3D area of space that is invisible to the player
and serves a specific purpose depending on its type. For
example, a Blocking Volume will prevent Actors from being
able to enter that Volume, a Pain Causing Volume will
cause damage to an Actor who enters that volume, and so
on.

Last, is the All Classes tab, which contains all the Actors
from the other tabs, plus some additional Actors not found
in any of the other tabs, either because they are less
common or just didn’t fit nicely into one of the other

3 . 2 – P l a c e M o d e | 65

groups. The list is somewhat long, so you may want to use
the search bar above. By typing into the search bar, you
can quickly narrow down the results to what you are
looking for.

3 . 3 N a v i g a t i n g W i t h i n t h e V i e w p o r t | 66

3.3 Navigating Within the Viewport

There are three main ways to navigate in the Viewport.

Mouse Navigation

The first way to navigate the Viewport is by mouse
navigation. Try holding down the left mouse button (LMB)
and dragging the mouse. This allows you to move the
camera forward or backwards and to rotate it left and
right. There is no way to move up and down with this
movement. It is only for travelling along the X and Y axes.
Also, you cannot move directly left or right with this
movement, you can only rotate left and right.

Now hold the LMB and the right mouse button (RMB) at
the same time and drag the mouse. This will allow you to
move directly left and right and up and down. Also, if you
have a middle mouse button, you can hold that down
instead of the left and right mouse buttons, to achieve the
same effect.

Finally, try holding down just the RMB and dragging the
mouse. This won’t move the camera along any axes but
what it does do is allow you to rotate the camera in any
direction so you can look at the scene from whatever
angle you wish.

3 . 3 N a v i g a t i n g W i t h i n t h e V i e w p o r t | 67

WASD Navigation

The second way to navigate the Viewport is to use WASD
navigation. This is used to move around the Viewport in a
way that more closely mimics the controls commonly used
when playing a standard first-person game using the
mouse and keyboard. It’s called WASD because it uses the
W, A, S and D keys on the keyboard, and a few of the keys
surrounding those keys.

To use WASD navigation, you will need to keep the RMB
clicked the whole time. This will allow you to rotate the
camera in any direction using the mouse, as discussed
before, but also, when the RMB is clicked, the WASD keys
will cause movement. Use the W, A, S and D keys
themselves to move the camera forward, backwards, left,
and right. Use the keys Q and E to move the camera up
and down. Use the keys Z and C to zoom the camera in and
out. Note that zooming is only temporary. Once you let go
of the RMB, the zoom will go back to default.

Focusing

Before learning the third way of navigating the Viewport,
you should know about focusing - a very simple yet
powerful feature of the Viewport window. Focusing is
useful in conjunction with the third navigation method and
on its own.

3 . 3 N a v i g a t i n g W i t h i n t h e V i e w p o r t | 68

To focus, press the F key, and it will focus the camera on
whatever object is selected. This is useful in large Levels
and Levels with many Actors. In these cases, it is often
much easier to find the Actor in the World Outliner list and
then press F to go straight to it in the Viewport, rather
than trying to hunt for the Actor visually in the Viewport.

Maya Navigation

The third way to navigate the Viewport is to use Maya
navigation. Maya refers to a popular 3D modeling program
in which these controls are used. The three controls in
Maya navigation are performed by holding down the Alt
key.

The first Maya control is done by holding the Alt key, along
with the LMB, and dragging the mouse. This will “tumble”
or “orbit” the camera around a single point of interest.
However, even if an Actor is selected, it won’t actually use
that Actor as the point of interest. To do that, you must
press F to focus on the Actor.

The second Maya control is performed by holding the Alt
key and the RMB and dragging the mouse. This will “dolly”
or “zoom” the camera toward, and away from, a single
point of interest. Again, press F to focus on an object first,
in order to dolly directly towards and away from it.

3 . 3 N a v i g a t i n g W i t h i n t h e V i e w p o r t | 69

The final Maya control is performed by holding down the
Alt key and the MMB and dragging the mouse. This will
cause the camera to “track”, or “pan”, up, down, left, and
right.

Camera Speed

To adjust the speed at which the camera moves about the
Level, adjust the camera speed slider in the upper-right
corner of the Viewport. If you have a very large Level and
want to be able to move about it quickly, you can set the
camera speed up to an 8 and your camera will move very
quickly. Conversely, if you need a fine level of control over
the camera speed, you can set it down as low as a 1, and it
will move very slowly. A setting of 4 is the default speed.

Figure 3.3.1 – Setting the Camera Speed

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 70

3.4 Moving, Rotating, and Scaling Actors

Moving, rotating, and scaling Actors within the Viewport is
performed by using the Move, Rotate, and Scale tools.
When you select an Actor, you will automatically be ready
to use one of the tools, depending on which of the three
are selected at that moment. To see which tool is selected,
look at the first three icons in upper-right of the Viewport.
From left to right, these three icons represent the Move,
Rotate, and Scale tools. Whichever tool is currently
selected will have an orange background.

Figure 3.4.1 – The Move, Rotate, and Scale tools

To change between the tools, click on their icons, or use
the shortcut keys W, E, and R to switch between them. The
W, E, and R keys are in a row on the keyboard and activate
the Move, Rotate, and Scale tools in the same order as
those icons appear on the screen. So the W key will
activate the Move Tool, the E key will activate the Rotate
Tool, and the R key will activate the Scale Tool. If you
forget what the shortcut keys are, just hover over the icon
and it will tell you in parentheses at the end of the
description.

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 71

Move Tool

When the Move Tool is active and an Actor is selected,
three different-colored arrows will appear on the Actor.
These three arrows are aligned with the X, Y, and Z axes of
the Level. To move an Actor in just the X direction, left-
click on the red arrow, and use the mouse to move the
Actor back and forth in that direction. No matter what
direction you drag the mouse, the Actor will only move
along the X-axis when the red arrow is held. To move an
Actor along the Y-axis, select the green arrow instead. To
move an Actor up and down, along the Z-axis, use the blue
arrow.

Figure 3.4.2 – A Static Mesh being moved with the Move
Tool

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 72

To move an Actor in two dimensions, click on the
connector between those axes. For example, let’s say you
already have a chair Mesh perfectly aligned with a floor,
and you don’t want to mess that up, but you do want to
change where the chair is located otherwise. In that case,
you would click on the connector between the X and Y
axes and then you could move the chair forward,
backwards, left, and right, but not vertical in any direction,
so that it remains perfectly aligned with the floor.

To move an Actor in all three dimensions at once, select
the white sphere in the middle of the arrows and drag the
mouse.

If multiple Actors are selected, they will all move at once.
To select multiple Actors, once the first Actor is selected,
hold down the Ctrl button and continue to left-click on
each additional Actor you wish to select. Note that the
Move Tool will only be visible on the last Actor selected,
but in the World Outliner all the selected Actors will be
highlighted.

If the Shift key is held while using the Move Tool, the
camera will move in tandem with the Actor. This is useful if
you want to move your Actor while keeping the camera
focused on it in the exact same way or if you want to move
the Actor some distance off screen and don’t want to have
to keep moving back and forth between moving the Actor

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 73

and camera. Note that this only works when moving in one
or two dimensions.

To make a copy of an Actor, you can select that Actor and
press Ctrl+W. Alternatively, when you are using the Move
Tool, if you hold down the Alt key, when you hold and drag
along an axis, instead of moving the Actor, it will make a
copy of that Actor which you will now be moving along
that axis. You can hold down the Alt key to drag out
several copies of an Actor.

Figure 3.4.3 – An Actor being copied using the Move Tool

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 74

Rotate Tool

Pressing the E key will activate the Rotate Tool. Using the
Rotate Tool, you can rotate an Actor around any of the
three axes. Clicking on the red arc and dragging the mouse
will rotate an Actor around the X-axis. The green arc
rotates around the Y-axis. The blue arc rotates around the
Z-axis.

Figure 3.4.4 – The Rotate Tool

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 75

Similar to the Move Tool, if the Alt key is held when
dragging the mouse, it will instead make a copy of the
Actor which will then rotate out of the original Actor.

Scale Tool

Pressing the R key will activate the Scale Tool. The Scale
Tool allows you to make your Actors bigger or smaller.

Figure 3.4.5 – The Scale Tool scaling a Static Mesh along
the X-axis

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 76

Using the same concept as the Move Tool, you can
increase or decrease the size along just one axis at a time,
or adjust the size two dimensions at a time by clicking and
dragging on one of the connectors between the axes. You
can change the overall size of the Actor uniformly, by
clicking on the white square in the middle and dragging
the mouse.

World Space vs Local Space

An important concept you should understand is that of
“world space vs local space”. Look at the box to the right
of the Move, Rotate, and Scale tools. If that box displays
an icon of the Earth, it means that the axes of an Actor will
be oriented to world space. If it displays an icon of a grey
cube, Actors will be oriented to local space. Clicking on the
icon or using the shortcut Ctrl+~ will toggle between the
two settings.

Figure 3.4.6 – An icon of the Earth means that Actors will
be oriented to world space

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 77

Let’s say the Move Tool is active and Actors are currently
oriented to world space. That means that no matter which
way an Actor has been previously rotated, the arrows of
the Move Tool will still point in the same direction, and
thus the Move Tool will still move the Actor in the same
direction relative to the world.

Figure 3.4.7 – Actor oriented to world space

In local space, however, the direction of the arrows
depend on the rotation of that particular Actor. In other
words, world space makes the axes point relative to the
world, while local space makes the axes point relative to
the Actor.

3 . 4 M o v i n g , R o t a t i n g , a n d S c a l i n g A c t o r s | 78

Figure 3.4.8 – Actor oriented to local space

The same concept applies to the Rotate Tool. In local
space, an Actor will rotate around the locally-oriented
axes. This setting does not apply, however, to the Scale
Tool. The Scale Tool will always be in local space, and it
won’t allow you to toggle when the Scale Tool is selected.

3 . 5 S n a p p i n g | 79

3.5 Snapping

Snapping is a technique used to perfectly align Actors with
one another. There are several different ways of using
snapping.

End Key

The first method involves using the End key. When the End
key is pressed while an Actor is selected, it will snap that
Actor directly onto the nearest surface. This is useful for
quickly aligning objects, such as getting Actors to sit
directly on a floor.

Surface Snapping

Another way of using snapping is called Surface Snapping.
Clicking on the icon to the right of the world space icon
will bring up a small pop-up where you can turn on Surface
Snapping. With Surface Snapping on, when the Move Tool
is used to move an Actor around in three dimensions, any
time it gets close to the surface of another Actor, it will
snap the selected Actor to the surface of the nearby Actor.

3 . 5 S n a p p i n g | 80

Figure 3.5.1 – Surface Snapping turned on

Note that this only works when moving the object in three
dimensions. It doesn’t work when moving Actors around in
just one or two dimensions at a time. In other words, you
need to be dragging the Actor around by the white sphere
in the middle for Surface Snapping to work.

Surface snapping has a couple of settings you can adjust to
change how it behaves. The first setting is called Rotate to
Surface Normal and it is set to “On” by default. The
following example will illustrate how this works.

Imagine there is an Actor that was rotated such that its
bottom surface was no longer in alignment with the
surface of the floor. With Surface Snapping on and Rotate
to Surface Normal off, when the Actor gets close to the
floor, it will snap to the floor, but it will keep the Actor at
the same rotation it was without attempting to rotate it to
align with the floor.

3 . 5 S n a p p i n g | 81

Figure 3.5.2 – Rotate to Surface Normal was off when this
chair was snapped to the floor

However, with Rotate to Surface Normal on, when the
Actor snaps to the floor, it will also be rotated so that its
bottom surface is perfectly aligned with the surface of the
floor.

3 . 5 S n a p p i n g | 82

Figure 3.5.3 – Rotate to Surface Normal was on when this
chair was snapped to the floor

The second setting of Surface Snapping that you can adjust
is the Surface Offset. This tells the Editor how far away the
surfaces of the two Actors should be when they snap
together. A value of 0 will cause Actors to be directly
touching when they snap. A value of 20 would cause
Actors to be 20 centimeters apart after snapping.

3 . 5 S n a p p i n g | 83

Grid Snapping

You can also align objects by using Grid Snapping. While
Surface Snapping is useful for aligning objects that are
close to one another, Grid Snapping is useful for aligning
objects across distances.

Clicking the icon to the right of the Surface Snapping icon
will toggle Grid Snapping on and off. With Grid Snapping
on, as an Actor is moved, it will only be able to move it in
the increments that the grid is divided into. The Actor will
“snap” to each line of the grid and can’t move a smaller
amount than that. With Grid Snapping off, an Actor can be
moved any distance.

3 . 5 S n a p p i n g | 84

Figure 3.5.4 – With Grid Snapping on, this chair will snap to
each line of the grid when moved

Snap Size

To the right of the Grid Snapping icon, is a box where you
can adjust the Snap Size. This will change the number of
units that the Actor can move at a time. Set at 10, the
Actor will move in increments of 10 units at a time.

3 . 5 S n a p p i n g | 85

Figure 3.5.5 – Setting the Snap Size

Note that the number of lines visible on the grid at any
given time is dependent on the Snap Size that is set. Set at
10, the grid is actually only displaying one out of every ten
lines it contains. At a Snap Size of 1, every line on the grid
will become visible.

Grid Units

In the Unreal Editor, 1 grid unit represents 1 centimeter in
your game. So whenever you see a number in the Unreal
Editor meant to represent a unit of distance, you can think
of that number in centimeters. For example, with Snap
Size set to 10, an Actor moved within the Viewport will
move 10 “in-game” centimeters at a time.

3 . 5 S n a p p i n g | 86

Rotation Snapping

Just like with the Move Tool, snapping can be turned on or
off for the Rotate Tool. To toggle Rotation Snapping, click
on the icon to the right of the Snap Size icon. With
Rotation Snapping on, an Actor can be rotated in specified
increments along a Rotation Grid, with those increments
being measured in degrees. So the Unreal Editor measures
distances in centimeters and it measures rotation in
degrees.

You can choose how many degrees the Actor should rotate
each time, by clicking the icon to the right of the Rotation
Snapping icon. Set to 10, an Actor will rotate in increments
of 10 degrees.

Scale Snapping

Just like with Move and Rotate, you can toggle Scale
Snapping on or off. To do so, click on the icon to the right
of the rotation degrees icon.

To change the increment that is scaled by, click the icon to
the right of the Scale Snapping icon. With the Scale Tool,
the increment is a multiplier. For example, if 0.25 is
selected, and you increment an Actor one size larger, its
size will increase by 0.25 times its current size. In other
words, its size will increase by 25%. If you make it smaller,

3 . 5 S n a p p i n g | 87

it will decrease by 25% at a time. With a setting of 0.5, it
would increase or decrease in increments of 50%, and so
on.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 88

3.6 Different Ways to View Your Level

This section will show you different ways you can view
your Level, that can make level design easier, depending
on the situation.

Immersive Mode

Pressing F11 will fullscreen the Viewport. This is what
Unreal calls Immersive Mode. Pressing F11 again will exit
fullscreen.

View Modes

Another way you can view your Level differently is by
changing the View Mode. To change the View Mode, hover
over the second-to-last box in the upper-left corner of the
Viewport and click on one of the selections from the menu
that appears.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 89

Figure 3.6.1 – View Modes

Most of these View Modes are for viewing subtle details in
regards to lighting that are beyond the scope of a
beginner’s book, so only the first three will be covered.
These are Lit, Unlit, and Wireframe.

Lit Mode

Lit is the default View Mode of the Level Editor and is for
viewing the Level with full lighting and rendering, similar
to what the player will see in-game.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 90

Unlit Mode

Unlit is for viewing the Level without the lighting having
any impact on what you see. In essence, this allows you to
see the base colors of all objects without the amount of
light or shadow affecting that color. Unlit is also useful for
working in Levels or areas of Levels where the lighting
would otherwise be too dark to easily see what you’re
doing.

Figure 3.6.2 – A Level in Unlit Mode

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 91

Wireframe Mode

Wireframe mode allows you to see just the edges of the
polygons of the objects in your Level. This can be helpful
for aligning objects, visualizing the overall structure of
something, and, in general, just giving you a more
architectural view of your Level.

Figure 3.6.3 – A Level in Wireframe Mode

Orthographic Views

To the left of the View Modes menu is a menu that allows
you to change between the default 3D perspective view of
the Level, to an orthographic view of the Level. There are

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 92

several different orthographic views to choose from, but
they all share two common traits. The first is that they
default to a wireframe view mode, although you can still
change the View Mode if you want.

The main thing about orthographic views is that they are
meant to be a 2-dimensional view of your Level, rather
than a 3-dimensional view. For example, in the “Top” view,
your vision is directly parallel with the Z-axis, so it is as if
you are looking directly down at your Level, and only
seeing the X and Y axes. Conversely, in “Bottom” view, you
are looking directly up at the Level.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 93

Figure 3.6.4 – A Level in Orthographic Top view

In the “Left” and “Right” views, you are looking down the
X-axis and only seeing the Y and Z axes. In the “Front” and
“Back” views, you are looking down the Y-axis and only
seeing the X and Z axes.

So each of the orthographic views has the point of vision
coming from a different place, but it will always be directly
along an axis, giving you a 2-dimensional view.

Orthographic views are useful for aligning the objects in
your Level in just two dimensions at a time. When paired
with the wireframe view mode, the idea is to get a 2D
architectural view of your Level.

When working in orthographic views, the navigation is a
bit different than the perspective view. When in an
orthographic view, holding down the LMB and dragging is
used for drawing a selection box that you can use to select
one or more objects. To navigate, hold down the RMB and
drag to pan the Viewport camera, or hold the left and right
mouse buttons down and drag, in order to zoom the
camera in and out. So LMB to select, RMB to pan, and both
mouse buttons to zoom.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 94

Show Flags

Another way to change the view of your Level is by
toggling the various Show Flags on and off. Show Flags can
be toggled using the checkboxes found in the icon to the
right of the View Modes icon. Show Flags tell the Editor
whether or not to show various types of Actors or effects
in the Viewport.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 95

Figure 3.6.5 – Show Flags

For example, if you uncheck the “Static Meshes” Show
Flag, all of the Static Meshes in the Level will disappear
from the Viewport. This doesn’t delete the Static Meshes
from the Viewport, it only makes them invisible for the

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 96

time being. It also doesn’t make them invisible in the
game, only in the Viewport.

Show Flags are useful for temporarily removing some of
the clutter from view, once your Levels start to get
complex. Even when they’re not complex, sometimes you
may have one type of object blocking another type and it’s
just easier to temporarily get the one out of the way.

Game View

If you press the G key, you can toggle the Viewport in and
out of Game View. When the Viewport is in Game View, it
will hide all Actors and icons that are invisible in-game. So
the Player Start Actor, for example, will be hidden, along
with the icons for your Light Actors, and so on. Game View
is meant to show you in the Viewport, exactly what the
player would see from that perspective in the game.

Piloting Actors Within the Viewport

Sometimes it is useful when placing Actors, especially
Camera and Light Actors, to see from the perspective of
the Actor itself. This makes it easier to have the Actor
point at the exact location you want it to point at.

3 . 6 D i f f e r e n t W a y s t o V i e w Y o u r L e v e l | 97

For example, if you place a Light Actor in a Level, and want
it to shine directly on a table Mesh, you can pilot the Light
in order to more easily aim it directly at the table.

To pilot an Actor, right-click on it, then look for an airplane
icon and the text “Pilot [Actor]” (a Spot Light Actor will say
“Pilot Spot Light”). Alternatively, select the Actor and use
the shortcut Ctrl+Shift+P.

Figure 3.6.6 – Piloting an Actor in the Viewport

3 . 7 C o n t e n t B r o w s e r | 98

3.7 Content Browser

The Content Browser, just like Place Mode of the Modes
panel, can be used to drag and drop Actors into a Level.
However, while Place Mode contains a list of generic,
built-in Actors for you to use, the Content Browser can be
used to create Actors, or to import in Actors created
outside of the Unreal Editor.

Sources Panel and Asset Window

Most of the space of the Content Browser is taken up by
two panels. The smaller panel on the left is the Sources
Panel. The Sources Panel contains the folder directory for
the Content Browser. To the right of the Sources Panel is
the Asset Window. When a folder is selected in the
Sources Panel, that folder will open in the Asset Window.
The Asset Window will contain both the sub-folders of that
folder and, unlike the Sources Panel, it will also contain the
files, or Assets, within that folder.

The Sources Panel is useful for navigating through the
folders without the clutter of the files themselves, but, if
you just want to work with the Asset Window alone, you
have the option to hide the Sources Panel. Pressing the
button in the upper-left will toggle the visibility of the
Sources Panel on and off.

3 . 7 C o n t e n t B r o w s e r | 99

The Sources Panel contains a search box that can be used
to find specific folders. The Asset Window contains a
search box that can be used to find specific Assets. For
example, you could type “lamp” to search for all Assets
with “lamp” in their name.

Figure 3.7.1 – Searching the Asset Window

The Asset Window also has a Filters menu that can be
used to find content of a certain type. For example,
clicking “Static Mesh” will show all the Static Meshes, and
only the Static Meshes, within the current folder and its
sub-folders. Clicking on the “Reset Filters” button will clear
out any filters currently being applied.

The search and filter functions can be combined. Let’s say
you were specifically looking for Static Meshes of lamps.
By typing “lamp” into the search box and applying the
Static Mesh filter, it will narrow down the results to only
Static Mesh files with “lamp” in the name.

3 . 7 C o n t e n t B r o w s e r | 100

Back Button and Forward Button

Above the Sources Panel and Asset Window, there is a
back button and a forward button. These work just like the
back and forward buttons in Windows or in a web
browser. You can use them to go back to the last so many
folders you were in, and then forward again if you wish. So
if you go to a “FirstPerson” folder, and then a “MyImports”
folder, and then a “StarterContent” folder, and then hit
the back button, it will take you back to the MyImports
folder. If you hit the back button again, it will take you
back to the FirstPerson folder. Now if you hit forward it
will go to the MyImports folder, and then to the
StarterContent folder again.

Breadcrumbs

To the right of the back and forward buttons are the
breadcrumbs. You’ve probably seen this kind of navigation
layout before even if you’ve never heard the term, but the
basic idea is to show you the direct path from the root
folder down to the folder you’re in.

Figure 3.7.2 - Breadcrumbs

3 . 7 C o n t e n t B r o w s e r | 101

Each folder in the folder path will have its own button.
Clicking on a button will take you directly to that folder.
Clicking on the arrow icon to the right of the folder name
will bring up a list of all the sub-folders, which can also be
navigated to directly by clicking on.

Add New Button

In the upper-left corner of the Content Browser is a green
Add New button which can be used to add a variety of
assets to the Content Browser. For example, clicking on
New Folder will add a new folder within the current folder.

Figure 3.7.3 – Add New button

At the very top of the Add New menu is Add Feature or
Content Pack. This gives you the chance to add in some of
the content that is available when you first create a
project. For example, clicking on “First Person” will add
folders containing some basic content for creating a first-
person game. Note, however, that unlike when you choose
the First-Person template when starting a project, this
method doesn’t automatically add and hook up any
content into your Level, it just adds it to the Content

3 . 7 C o n t e n t B r o w s e r | 102

Browser. From there you can drag and drop the content
into your Level as you choose.

Figure 3.7.4 – Add Feature or Content Pack

The Content Packs tab gives you the option to add the
Starter Content into the Content Browser if you hadn’t
already done so when creating the project. There is also an
option for Starter Content specifically for mobile devices.

3 . 7 C o n t e n t B r o w s e r | 103

Import Button

To the right of the Add New button is the Import button. If
you have a file on your computer that you want to import
into the current project, all you need to do is click the
Import button, and select the file, and it will import that
file directly into whatever folder you’re currently in, in the
Content Browser. Alternatively, you can simply drag and
drop files from your computer directly into the Content
Browser.

Save All Button

To the right of the Import button is the Save All button.
When the icon of an image in the Content Browser has an
asterisk in its lower-left, this means that this Asset hasn’t
been saved. By clicking the Save All button, it will bring up
a window that lists all the unsaved Assets in the Content
Browser and allows you to unselect any if you don’t want
to save them. Once “Save Selected” is clicked, the asterisk
will go away, indicating that the Asset has been saved and
has no new modifications.

View Options

In the bottom-right of the Content Browser is the View
Options button. As the name implies, if you click this

3 . 7 C o n t e n t B r o w s e r | 104

button, you will get a menu of options related to viewing
the content in the Content Browser.

Figure 3.7.5 – View Options in the Content Browser

Tiles vs List vs Columns

For example, you can change the way the files are
displayed. By default, it is set to Tiles, which will display
the files with large icons in a grid formation. List will make
the files display using smaller icons and larger text and will
be positioned one per row. Columns will display additional
information for each Asset.

3 . 7 C o n t e n t B r o w s e r | 105

Figure 3.7.6 – Assets in List view

Show Folders

By default, folders in the Asset Window are displayed, but
by unchecking Show Folders, only the Assets will show,
and not the folders.

Show Developers Folders

The next option in the menu is Show Developers Folders.
Sometimes you might want to experiment with things
without risking messing up your game you’ve been
working on, or you may just prefer to keep unfinished
assets separate from your game until they’ve been
completed. In these situations, you want a sandbox
environment you can work in that’s separate from the rest
of your content. This is what the Developers Folders are
for.

If you click Show Developers Folders, you will see an
additional entry in the Sources Panel labeled
“Developers.” If you expand that, you should see another
folder with your name on it that you can use to store your

3 . 7 C o n t e n t B r o w s e r | 106

test assets. If there were multiple people working on a
project, each person would have their own folder. This is
so everyone’s test assets are not only kept separate from
the game but also separate from each other, to reduce
unnecessary clutter.

Show Plugins Content

The next checkbox is Show Plugins Content. Checking this
will allow you to see the content used by the third-party
plugins that have been added onto the Unreal Engine. For
the most part, this content is just the source code for
these plugins, so, you’re probably not ever going to have a
need to access it. In fact, even if you know how to code,
you shouldn’t try to modify any of this content unless you
really know what you’re doing.

Show Engine Content

The same goes for Show Engine Content. This will allow
you to see, and thus modify, the source code for the
Unreal Engine itself, which isn’t recommended.

Show Collections

The next option is Show Collections. If enabled, a
Collections panel will appear over in the bottom-half of
the Sources Panel. Collections are a way to help you
organize your Assets by placing them into groups. Often,

3 . 7 C o n t e n t B r o w s e r | 107

organizing your assets into a logical folder structure is
enough, but that can only go so far.

For example, let’s say you wanted to have a grouping of all
your chair Assets. You could make a folder called “Chairs”
and move all the chairs into it. But what if you also wanted
to group all of the yellow objects? You could make a folder
called “Yellow,” but then you would have to choose
whether to put the yellow chair in the Chairs folder or the
Yellow folder. And you don’t want to have to try and track
and maintain multiple copies of your Assets either.

The solution is to use Collections, because when you add
an Asset to a Collection you are really only adding a
shortcut to that Asset in the Collection and not the Asset
itself. So you can add an Asset to multiple Collections
without having to move or make a copy of the Asset itself.
You can make a Collection called “Chairs” and add a chair
to it, and make a Collection called “Yellow” and add the
chair to that as well.

To make a new Collection, click the “Add” button, and
you’ll be given a list of three types of Collections to choose
from. The first two only apply when you are working with
other people on the same project, and will be greyed out
otherwise. The only other option is Local Collection.

3 . 7 C o n t e n t B r o w s e r | 108

Figure 3.7.7 – Adding a new Collection

Directly to the left of the name of a Collection is an icon
indicating what type of Collection it is. There is also a small
box that will be grey when the Collection is empty and
green when the Collection has content. To add an Asset to
a Collection, simply click on the Asset and drag it onto the
name of the Collection.

That’s how to create Static Collections, but there’s also a
way to create what’s called Dynamic Collections. For
example, if you searched for “lamp” again in the Assets
Window, and then clicked on the save icon to the right,
you can save the search results as a Dynamic Collection.
This doesn’t save the Assets as the Collection, it saves the
search query itself as the Collection. Meaning, every time
you click on the “lamps” Collection, it will be performing
that search and returning the results. So if a new Asset
with the word “lamp” is added, that Asset would be
automatically added to this Collection.

3 . 7 C o n t e n t B r o w s e r | 109

You can see which of your Collections are Static and which
are Dynamic by looking at the icon to the right. A
rectangular icon indicates a Static Collection, while a
lightning icon indicates a Dynamic Collection.

Figure 3.7.8 – The icons to the right indicate if the
Collection is Static or Dynamic

Thumbnail Options

The last group of options in the View Options menu
concern the thumbnail images of the Assets. The slider is
used to scale the size of the thumbnails larger or smaller.

The next option is Thumbnail Edit Mode. Clicking on this
gives you the ability to change the perspective on the
thumbnails. When you’re in Thumbnail Edit Mode, there
will be a yellow banner across the bottom, and when you
click on a thumbnail and drag, instead of dragging that
Asset, it will rotate the image of the Asset within the

3 . 7 C o n t e n t B r o w s e r | 110

thumbnail. After you are finished, you can click “Done
Editing” to exit Thumbnail Edit Mode.

The final option is Real-Time Thumbnails. Some Materials,
such as a water Material, have an associated animation.
Unchecking Real-Time Thumbnails will turn the animation
off in the Content Browser. Note that the Material will still
have that animation, the preview of that animation will
simply be turned off in the thumbnail.

Content Browser Windows

If you ever close the Content Browser, you can quickly
reopen it by going up to the Toolbar and clicking the
Content button. This is useful if you want to keep the
Content Browser closed while you are editing existing
items in your Level, giving you a large Viewport to work
with, but still have a way to quickly reopen it.

Figure 3.7.9 – The Content button will reopen the Content
Browser

3 . 7 C o n t e n t B r o w s e r | 111

Also, the Unreal Editor allows you to have up to four
Content Browsers open at once. If you go up to the file
menu and go to Window > Content Browser, you can open
up to three additional Content Browsers. If you have
multiple monitors, you can drag these additional Content
Browsers over to those monitors and work on them from
there.

Another piece of functionality relating to multiple Content
Browsers is the lock button in the upper-right. To
understand the lock button, we must temporarily jump
ahead a bit and introduce the Find button within the
Details Panel.

For example, let’s say a Static Mesh Actor is selected.
Pressing the Find button in the Static Mesh category of the
Details Panel will navigate the Content Browser directly to
the Static Mesh Asset being used by that Actor. Clicking
the Find button in the Materials category will navigate to
the Material being used by that Actor.

3 . 7 C o n t e n t B r o w s e r | 112

Figure 3.7.10 – Clicking the Find button will navigate the
Content Browser directly to that Asset

However, if you are in a certain folder in the Content
Browser and want to remain in that folder, you can click
the lock button to lock that Content Browser down, and
now when you click on one of the Find buttons, it will open
that Asset in a new Content Browser, instead of changing
the location in the current one.

3 . 8 D e t a i l s P a n e l | 113

3.8 Details Panel

When you select an Actor, the Details Panel will display
lots of information about that Actor, most of which is
editable. At the top of the Details Panel is the name of the
Actor, which can be changed.

Figure 3.8.1 – The top of the Details Panel

To the right of that box you will see a Lock icon. By
toggling the Lock icon to the locked setting, this will keep
the details of the currently selected Actor locked in the
Details Panel, even if other Actors are selected.

Below that is a button for adding a component to the
Actor and a button for creating a Blueprint out of the
Actor. Below that, you will see the component structure of
the Actor. Components and Blueprints will be covered in
detail in a later chapter.

3 . 8 D e t a i l s P a n e l | 114

Looking at the Details Panel, you will see that it is mostly
comprised of properties of the selected Actor, and that
those properties are grouped into Categories. This can be
a long list, so there is a search box available to quickly find
a property or category.

Property Matrix

To the right of the search box is a button that will launch
the Property Matrix. The Property Matrix is for bulk
comparison and editing of properties. Meaning it is used
to compare and edit the values of properties of multiple
Actors at once.

Figure 3.8.2 – The Property Matrix

Whichever Actors are selected when the button is pressed
will be opened in the Property Matrix. By default, the Grid
will start with just the Name column, which will display the
name of the Actors that have been selected.

3 . 8 D e t a i l s P a n e l | 115

To the right of the Grid is a menu of properties that are
common to all the selected Actors. This menu can be used
to select which properties should be displayed as columns
in the Grid. Just like with the Details Panel itself, there is a
search bar you can use to search for a category or
property.

To “pin” a property to the grid, click on the pin icon to the
left of the name. This can be used to quickly compare lots
of properties between Actors and quickly edit their values.
You can sort by a column by clicking on the column label.
You can edit the values by clicking in any of the cells and
making changes. You can copy and paste values between
cells, and so on.

View Options

To the right of the Property Matrix button is the View
Options menu for the Details Panel.

3 . 8 D e t a i l s P a n e l | 116

Figure 3.8.3 – View Options in the Details Panel

First on the list is Show Only Modified Properties. This will
hide any properties that still have their default values and
only show you those properties which have been modified
since this Actor was created.

Next is Show All Advanced Details. At the bottom of some
of the categories in the Details Panel, there is a little strip
with a downward facing triangle in it. This means that the
category has “Advanced Details.” Advanced Details are
properties that are less commonly used and are thus
hidden by default to reduce clutter. To view Advanced
Details for a category, you can simply click on the strip
with the triangle to expand the menu, and then click it
again to collapse it. But if you want to expand all of the
Advanced Details menus at once, you could do so by
checking Advanced Details in this menu here.

Next is Show Child on Category Match. This is checked by
default, but when it is unchecked, the search bar will no
longer try to match the text with Category names, it will
only search the property names.

By default, all the categories in the Details Panel are
expanded. However, they can be collapsed if you wish. You
have the option to collapse or expand them individually by
clicking on the triangle to the left of their names. But with

3 . 8 D e t a i l s P a n e l | 117

the View Menu, you also have the option to collapse them
all at once by clicking Collapse All Categories or expanding
them all at once by clicking Expand All Categories.

Transform Category

The Details Panel has a lot of functionality in it that is
specific to the type of Actor selected, but the Transform
category is common to all Actors.

Figure 3.8.4 – The Transform Category of the Details Panel

Earlier, you learned how to transform Actors using the
Move, Rotate, and Scale tools. But another way to move,
rotate, and scale Actors is to use the Transform category
of the Details Panel. The tools are useful when placement
and scale don’t need to be exact and you want to
transform things quickly. But for finer precision or when
exact values are needed, you can use the Details Panel to
insert exact values manually.

3 . 8 D e t a i l s P a n e l | 118

The location of an Actor can be changed by changing the X,
Y, and Z coordinates in the Location row. For Rotation, you
can enter the number of degrees manually, or left-click on
the arrows and drag left and right to adjust the value.

With Scale, you can directly enter a multiplier to scale by.
For example, if the Z scale for a chair is currently 1.0, and
you change it to 0.5, it will make the chair half as tall. But if
you change it from 1.0 to 2.0 instead, it will double the
height of the chair.

To the right of the Scale numbers, there is a little lock icon.
When it is unlocked, and one of the numbers is changed, it
affects that axis only. But let’s say you want to scale an
Actor uniformly, you can click on the lock icon to toggle it
to locked, and now any change made to one of the axes
will apply to them all equally.

Unless they are already set to their default values, each
group of numbers will have a yellow arrow icon to their
right. Clicking this icon will reset those numbers to their
default values, which, for Location and Rotation is all
zeroes, and for Scale is all ones.

When multiple Actors are selected, any values that happen
to be common to all the Actors selected will be displayed,
but in all other cases, the text “Multiple Values” will be
displayed in the box instead. Entering a value in the box
will apply that value to all Actors selected.

3 . 8 D e t a i l s P a n e l | 119

Relative vs World

By clicking on their labels, you can change the Location,
Rotation, or Scale “type” to either Relative or World. So
far, all the Actors we’ve worked with have had the world
itself as its parent, so in those cases there is no difference
between the two settings.

Figure 3.8.5 – Setting the Location Type to Relative

In Unreal, Actors can have parent Actors and/or child
Actors. This concept will be discussed in more detail in the
next section, but for now, just imagine that there is a cone
Actor that is set to be the child of a chair Actor. Put
another way, the chair is the parent of the cone.

If Location is set to Relative, and the coordinates of the
cone are set to 0-0-0, the cone will be located directly in
the center of the chair, its parent. But if Location is set to
World, the cone will now be located at the center of the
world, instead of at the center of its parent.

3 . 8 D e t a i l s P a n e l | 120

Mobility

Mobility is a setting that applies mainly to Static Mesh
Actors and Light Actors.

For Static Meshes, there are two options - Static and
Moveable. Static means that the Actor will remain
stationary the entire time, while Moveable means that it is
possible for the Actor’s location to change. To clarify, the
“static” in “Static Mesh” refers to the fact that the Mesh
doesn’t have any moving parts relative to itself, while the
Static mobility setting means that the Actor’s location will
never change.

With Light Actors, there is a third option - Stationary. This
is used for Lights that don’t move, but can change in other
ways such as being turned on or off, or having its color
change.

So what’s the point of the Mobility setting? Why not just
make all Actors moveable even if they are just meant to be
decorative? The answer is that moveable Actors require
more processing power than static Actors because of
things like light and shadow rendering. If an Actor is static,
the Engine can predetermine how these things should
look. So you should always make an Actor static if you can,
and only increase the Mobility if you need it.

3 . 9 – W o r l d O u t l i n e r | 121

3.9 World Outliner

The World Outliner is used as an organized list of all the
Actors in your Level. By default, it is located in the upper-
right of the Level Editor.

Figure 3.9.1 – The World Outliner

Clicking on one of the Actors in the World Outliner will
select that Actor in the Viewport. Double-clicking will focus
on that Actor in the Viewport. This is useful if you have a
Level you’ve been working on for a long time and it has

3 . 9 – W o r l d O u t l i n e r | 122

hundreds or even thousands of Actors and you want to go
to a specific one. Instead of hunting for it visually
throughout your Level, you can just find it in the World
Outliner list, double-click, and it will take you straight to it.

World Outliner Data

The World Outliner is comprised of several individual
columns. The main column contains the name of the
Actor, which can be changed to whatever you like. There
are a few ways you can do this. Just like with a file in
Windows, if the Actor is already selected and is left-clicked
again, it will allow you to rename it. You can also select the
Actor and press F2 to achieve the same result. Or, you can
select the Actor, then come down to the box in the Details
Panel and rename it from there.

In the left-most column is an icon of an eye for each row.
This is a button that will toggle the visibility of the Actor on
and off in the Viewport. This is useful when you are
working on your Level and you have, for example, a large
wall or some other Actor that is getting in the way and
making it hard to see what you’re doing; you can just
toggle it’s visibility off temporarily to make things easier.

The right-most column lists the type of the Actor. The icon
directly to the left of the name of the Actor also gives this
information. A small grey house icon is used for Static

3 . 9 – W o r l d O u t l i n e r | 123

Mesh Actors and a blue box is used for Brush Actors, and
so on. Each type of Actor will have their own special icon.
This icon also displays other information. If an Actor’s
mobility is set to Moveable, an orange dot will appear on
the icon. If it is set to Stationary, a yellow dot will appear.
If it is set to Static, no dot will appear.

The Actors in the World Outliner can be listed
alphabetically. Clicking at the top of the column with the
Actors’ names will sort the list alphabetically by name.
Clicking again will sort the list in reverse alphabetical
order. Clicking at the top of the Type column will sort the
list alphabetically by type.

Grouping Actors

Another feature of the World Outliner is that you can use
it to attach Actors to one another. Dragging the listing of
one Actor onto the listing of another will make the first
Actor a child of the second Actor. Children will be listed
under their parents and indented to the right.

When you move a Parent, it will automatically move all of
the Children of that Parent the same amount. But this
doesn’t work in reverse. Moving a Child will not affect its
Parent.

3 . 9 – W o r l d O u t l i n e r | 124

If you want to manipulate a group of Actors all at once, but
it doesn’t make sense to make any parent-child
relationships out of them, you just want them all grouped
as equals, you can do that too. First, you need to select all
the Actors you wish to be part of the Group. If you want to
quickly select a long list of sequential Actors, you can
select the first Actor then hold down the Shift key and
press the down key to continually select the Actors below
it. Or you can hold down the Ctrl key and left-click on each
of the Actors you wish to select, or click on them again to
deselect them.

If you have multiple Actors selected, you will still only see
the Move/Rotate/Scale tool on one of them - the last one
that was selected. But if you use the tool, it will still apply
the same effect to all the Actors in the grouping.

To make a grouping “permanent,” you can formally define
a selection of Actors as a Group by pressing Ctrl+G. You
will see green brackets around the Actors, letting you
know that they are a Group. To ungroup Actors, press
Shift+G. Alternatively, with your Actors selected, you can
right-click on them, and select “Group” or “Ungroup” from
the pop-up menu.

3 . 9 – W o r l d O u t l i n e r | 125

Figure 3.9.2 – Actors that have been defined as a Group
will have green brackets around them

When you create a Group, this will also create a “Group
Actor” in the World Outliner, which you can rename to
your liking. To select the Group in the World Outliner, you
can either select any of the Actors in the Group or just
select the Group Actor itself.

So what if you’ve just done a lot of work grouping several
Actors together and then decide you want to adjust one of
the individual Actors within the Group? Luckily, there is a
way to do this without having to ungroup the Actors and
then selecting and grouping them all again. In this
situation, you can temporarily “unlock” the Group, which
will allow you to move, rotate, or scale the individual
Actors without affecting the others, and then “lock” the
Group again once you’re finished.

3 . 9 – W o r l d O u t l i n e r | 126

All Groups are locked by default upon creation. A locked
Group is indicated by the green brackets around them. To
unlock a Group, right-click within the Group, scroll down
to “Groups” in the menu, and select “Unlock.” The
brackets around the Group will turn to red, indicating that
the Group is unlocked. Adjustments to the individual
Actors within the Group can now be made. When you are
done, right-click again, go down to “Groups” and select
“Lock” to lock the Group once more.

Figure 3.9.3 – Locking and unlocking Groups

3 . 9 – W o r l d O u t l i n e r | 127

Unlocking a Group does one other thing. It also allows you
to remove individual Actors from a Group. With a Group
unlocked, if you right-click on one of the individual Actors
in the Group, and go down to Groups, there will be an
option to “Remove from Group.” If you click that, it will
remove the Actor from the Group while still keeping all the
other Actors grouped together.

Organizing and Finding Actors

As mentioned before, the main purpose of the World
Outliner is to be able to organize and find your Actors. One
way to help organize your Actors is by grouping them into
folders. To create a new folder in the World Outliner, click
on the New Folder icon, and it will create a new folder
which can then be named. If you click on the New Folder
icon while an Actor is selected, it will create the folder and
then automatically add the Actor to that folder.

The World Outliner also has its own search bar. If you
know the name of the Actor you’re looking for, you can
type it in the search bar and it will return all matches, even
partial matches. For an exact match, meaning the query
has to match the name exactly, put a plus sign in front of
the search term. To exclude something from the search
results, type the word preceded by a negative sign.

3 . 9 – W o r l d O u t l i n e r | 128

Figure 3.9.4 – Using the World Outliner to search for Actors

3 . 1 0 C h a p t e r 3 Q u i z | 129

3.10 Chapter 3 Quiz

1. What is the difference between the Unreal Engine
and the Unreal Editor?

2. What is the main editor of the Unreal Editor?

3. What is the window in the Level Editor called that
gives you a visual representation of your Level?

4. What is the first mode of the Modes Panel?

5. What button or key, when held down, will cause you
to rotate your view in the Viewport when the mouse
is dragged and will also allow you to navigate the
Viewport with WASD movement?

6. What button or key is used to focus on objects in the
Viewport?

7. What three buttons or keys are used to select the
Move, Rotate, and Scale Tools?

8. How do you use the Move Tool to make a copy of an
Actor?

9. What button or key is used to snap an Actor to the
nearest surface?

3 . 1 0 C h a p t e r 3 Q u i z | 130

10. What button or key is used to enter and exit

Immersive Mode (fullscreen)?

11. How can you hide all Actors and icons in the
Viewport that won’t be visible when the game is
running?

12. In the Transform Category of the Details Panel, what
is the lock icon to the right of the Scale values used
for?

13. What does it mean when a Light Actor has a
Mobility setting of Stationary?

14. True or False: Moving an Actor will also move that
Actor’s parent.

3 . 1 0 C h a p t e r 3 Q u i z | 131

Answers

1. The Unreal Editor is the application used to create
games and the Unreal Engine is the application that
runs the games.

2. The Level Editor

3. Viewport

4. Place Mode

5. right mouse button

6. F key

7. W, E, and R keys

8. Hold down the Alt key and use the mouse to drag one
of the Move Tool’s three colored arrows.

9. End key

10. F11 key

11. Press the G key to enter Game View.

3 . 1 0 C h a p t e r 3 Q u i z | 132

12. Toggling the icon to a locked status will cause the

selected Actor to scale uniformly when scaling any of
the axes.

13. The Light can’t change location but can change in
other ways, such as being turned on or off, or having
its color change.

14. False. Moving a parent will also move the child, but
not vice-versa.

C h a p t e r 4 - A c t o r s | 133

4
Actors

4 . 1 S t a t i c M e s h e s | 134

4.1 Static Meshes

A mesh is a 3D model of an object. There are two specific
types of meshes that you can use as Actors in the Unreal
Engine. These are the Static Mesh and the Skeletal Mesh.

A Static Mesh is a Mesh that doesn’t bend, deform, or
change shape in any way. A Static Mesh can still move
around on the screen, it just can’t animate. For example,
you could use a Static Mesh in the shape of a cube to
represent a cardboard box, and you could have that box
slide across a surface, or fall off a table, or fly across the
room, but you couldn’t have flaps that open and close. For
objects with moving parts, you would use a Skeletal Mesh.

There are a few different Static Mesh Actors in Place Mode
of the Modes Panel. Under the Basic tab, there are Static
Meshes in the shape of a cube, sphere, cylinder, and cone.
These can be dragged into the Level, and then positioned,
rotated, and scaled as desired.

4 . 1 S t a t i c M e s h e s | 135

Figure 4.1.1 – The Modes Panel contains Static Meshes in
the form of some basic shapes

While there are some basic Static Meshes in the Modes
Panel, more often than not you will be dragging and
dropping Static Meshes from the Content Browser that
you import in. The Starter Content comes with some Static
Meshes, but this is a small supply. You will want to import
in meshes that you download or create yourself in a 3D-
modeling application. The final chapter of this book will
show you where you can download collections of meshes
and other content for you to use in your games.

Replacing the Mesh of a Static Mesh Actor

In Unreal, the static mesh itself is actually a property of the
Static Mesh Actor. For example, if you drag a mesh of a
chair into the Level, Unreal will create a Static Mesh Actor
and assign the chair mesh as the mesh to use for that
Actor. You could then tell Unreal to use a mesh of a couch
for that Actor and you would have a couch at the same
location, rotation, and scale as the chair was.

One way to replace the mesh of an Actor is to use the
dropdown in the Static Mesh category of the Details Panel.
The dropdown will contain a search box you can use to
find the mesh you want to use.

4 . 1 S t a t i c M e s h e s | 136

Figure 4.1.2 – You can use the dropdown in the Static Mesh
category to replace the mesh Asset that is used

Another way is to browse to the replacement mesh in the
Content Browser, select it, and then click on the arrow in
the Static Mesh category of the Details Panel. The arrow
will replace the current mesh with whatever is selected in
the Content Browser when you click it.

Physics

If you drag a Cube Mesh into a Level, and then press Play,
the cube won’t fall to the ground, it will just sit suspended
in the air. If you press up against it, it won't move.

There are two reasons for this. The first reason is that the
default Mobility of a Static Mesh Actor is Static. When the
Mobility is Static, we are telling the engine that this Actor
will never change its position or rotation for any reason.
The Mobility will need to be set to Moveable before the
cube will be able to move.

4 . 1 S t a t i c M e s h e s | 137

The second reason is that Static Meshes have physics
turned off by default. To turn on physics for an Actor, with
the Actor selected, go to the Physics category in the
Details Panel and check the box next to Simulate Physics.

Figure 4.1.3 – The Physics category in the Details Panel

If you were to press Play after changing these two settings,
the cube would now fall to the ground and you would be
able to push it along the ground.

The Physics category has several other properties. One of
them is the mass of the Actor, measured in kilograms. If
you change the size of the Actor, it will increase or
decrease its mass accordingly. Objects with more mass
require more force applied against them in order to be
affected. You can also set the mass directly without

4 . 1 S t a t i c M e s h e s | 138

changing the size, which also has the effect of changing
the density of the Actor.

The next two properties are Linear Damping and Angular
Damping. Damping refers to the amount of drag that is
applied to the movement of the object. Similar to having
more mass, the more drag an Actor has, the harder it is to
move. But in this case, drag is meant to represent friction
on the object. For example, if a cube were a smooth block
of ice, it would have less drag on it than a rough block of
stone, even if the two had the same mass.

The Linear Damping property affects translational
movement of the object, meaning a change in location,
while the Angular Damping property affects rotational
movement of the object, meaning a change in rotation. By
increasing Linear Damping, an Actor won’t travel as far
when pushed, but will still spin just as easily. Decreasing
the Linear Damping to a negative value will cause the
Actor to travel farther when pushed, and still doesn’t
affect the spin. Increasing or decreasing the Angular
Damping won’t affect how far the Actor travels in
response to force, but will make it easier or harder to spin
the object.

Below the Angular Damping property is the Enable Gravity
setting. If this is turned off, but Simulate Physics is on, an
Actor will still react to force, but gravity will not affect it.

4 . 1 S t a t i c M e s h e s | 139

This can replicate zero-gravity environments such as outer
space.

4 . 2 B r u s h e s | 140

4.2 Brushes

In the world of 3D modeling, a Brush is simply a 3D area of
space. This is nearly identical to our understanding of what
a Mesh is, but there are several key differences between
Brushes and Meshes.

Brushes vs Meshes

The first difference is that Brushes are used for more basic
shapes. In the Modes Panel, in the BSP tab, you can see
the Brushes that are available. There are some basic
geometric shapes and some Brushes in the shape of stairs.
In the Basic tab, we also have some Static Meshes
available in the form of basic geometric shapes, but
Meshes can be much more complex than this, taking the
form of furniture, cars, people, etc.

4 . 2 B r u s h e s | 141

Figure 4.2.1 – The Brushes available in the BSP tab of Place
Mode

The second key difference is in how the Unreal Engine
handles Brushes and Meshes in memory. For example,
let's say you make several copies of a Brush Actor. Each
copy made gets stored in memory, and thus each copy
made increases the memory demands of the game.
However, no matter how many copies of a Mesh you
make, it will not increase the memory needed at all. This is
because a single Mesh only gets stored in memory once,
no matter how many instances of it there are in your
Level.

So Meshes look better and they perform better, but the
advantage of Brushes is that they are easier to edit than
the more complex Meshes. This makes Brushes better

4 . 2 B r u s h e s | 142

suited for making a prototype, or a rough draft, of a Level.
So you can use Brushes to sculpt the basic layout of your
Level and then replace those Brushes with Meshes once
the layout is finalized. In theory, once you have the basic
layout sculpted in Brushes, you won't need to keep making
minor changes over and over to the more difficult to edit
Meshes. While the final version of most games will have
very little or no Brushes in it at all, chances are, each of its
Levels started out made almost exclusively as Brushes.

Brush Settings

Brushes have several different properties available for you
to edit under the Brush Settings category of the Details
Panel.

4 . 2 B r u s h e s | 143

Figure 4.2.2 – Brush Settings for a Box Brush

Brush Type

Some of these properties are different, depending on the
base shape of the Actor, but one property that is common
to all Brushes is Brush Type. The Brush Type for any Brush
can either be Additive or Subtractive. You can choose what
type you want your Brush to be, before you drag it in, by
choosing the type in the Modes Panel. Or you can change
the type of an existing Brush, by changing it in the Details
Panel.

The Additive type is pretty straight forward. An "additive"
Brush will add geometry to the Level. A subtractive Brush,
on the other hand, will subtract from existing geometry in
the Level. For example, if a subtractive Cylinder Brush is
dragged onto an additive Box Brush, wherever the
subtractive Cylinder Brush is overlapping is causing the
geometry that was there to be removed. You can think of
subtractive Brushes as "holes" in the shape of the Brush.

This feature is one of the main reasons why Brushes are so
well-suited to sculpting overall Level design. By adding and
subtracting geometry in this way, you can sculpt the layout
of a Level much faster than you could trying to use
Meshes.

4 . 2 B r u s h e s | 144

Brush Shape

The next property under Brush Settings is Brush Shape.
Brush Shape simply refers to if the Brush is in the shape of
a box, a cylinder, a cone, and so on. You can choose which
Brush Shape to use by choosing which Actor to drag into
the Level, but you can also change the shape of an existing
Brush Actor in the Brush Settings category.

Size Properties

Some of the properties in Brush Settings are dependent on
the shape of the Brush being used. For example, a Box
Brush will have X, Y, and Z properties denoting the length
of the Box in those dimensions. Adjusting these values will
adjust the size of the Box. This is similar to using the Scale
property in the Transform category, with one key
difference when it comes to Materials that I will talk about
in the section on Materials.

The Cylinder and Cone Brushes have their size determined
by just a Z length, and an Outer Radius property. The Z is
how tall the cone or cylinder is, and the Outer Radius is
how wide around it is. For the Cone, this is the radius as
measured at the base. For the Sphere Brush, radius is the
only property used to determine its size.

4 . 2 B r u s h e s | 145

Sides Properties

The Cylinder and Cone Brushes also have a property called
Sides. As you might have noticed already with these Brush
shapes, their “curved” edges, so to speak, aren’t actually
curves, but are made up of a series of flat sides. The Sides
property determines how many of these flat sides the
Brush has. The more sides it has, the smoother around it
will appear.

The Sphere Brush has a property similar to this, which is
the Tessellation factor. The higher this number is, the
more sides the sphere will have, and the smoother it will
appear.

The Cylinder and Cone Brushes also have the property
Align to Side. If this is checked, it will align the sides of the
Brush with the grid.

Hollow Property

Another property of Brushes that is common to the Box,
Cone, and Cylinder Brush, is whether or not the Brush is
Hollow. This is just what it sounds like. If this property is
checked, instead of the Brush being solid all the way
through, it will be hollow inside, and the Brush will
essentially be a shell, with walls of some thickness. For Box
Brushes, this is set with the Wall Thickness property. For
Cylinder Brushes, this is set by the Inner Radius property.
The Inner Radius is the radius of the hollow part. For Cone

4 . 2 B r u s h e s | 146

Brushes, this is set by both the Inner Radius property and
the Cap Z property. The Cap Z property determines how
tall the hollow area is within the cone. For each of these,
the property is greyed out unless the Hollow property is
checked.

One thing the Hollow feature is particularly useful for, is
for quickly creating rooms or buildings. This can be done
by making a large Box Brush, setting it to Hollow, and then
using a smaller, subtractive Box Brush to make a doorway.

Stair Brushes

The Linear Stair is the simplest of the three Stair Brushes.
It has Length, Height, and Width properties to determine
the size of each individual step. You can also choose the
number of steps for the staircase. The default is 10 but you
can make this larger or smaller as you wish.

4 . 2 B r u s h e s | 147

Figure 4.2.3 – A Linear Stair Brush

The Add to First Step property is essentially a Step Height
property for the first step only. While the Step Height
property increase or decreases the height of all of the
steps, the Add to First Step property will only affect the
height of the first step.

4 . 2 B r u s h e s | 148

Figure 4.2.4 – Brush Settings for a Linear Stair

The Curved Stair has some of the same properties as the
Linear Stair, such as Step Height, Step Width, Number of
Steps, and Add to First Step. But it also has some other
properties as well that pertains to its curve.

4 . 2 B r u s h e s | 149

Figure 4.2.5 – A Curved Stair Brush

The first of these properties is the Inner Radius. Imagine
the Curved Stair wrapping around an invisible column.
When the Curved Stair is selected, you will see the
Transform tool at the center of this invisible column. The
Inner Radius property sets the length between the center
of this invisible column, and the edge of the staircase. In
other words, it affects the width of this “invisible column.”

Figure 4.2.6 – Brush Settings for a Curved Stair

Next, is the Angle of Curve property. This will set the angle
that is made between the two vectors pointing from the

4 . 2 B r u s h e s | 150

center of the invisible column to each end of the staircase.
The default is 90 degrees.

Last, is the Counter Clockwise property. This one is pretty
straightforward. With this unchecked, the staircase will
curve in a clockwise direction. With it checked, the
staircase will instead curve in a counter-clockwise
direction.

The final staircase is the Spiral Stair. With the Spiral Stair,
the Step Height property is a little different than it is on
the other two stairs. With the Spiral Stair, the Step Height
won’t affect how tall each step is, it will affect how much
each step overlaps the step above and below it.

Figure 4.2.7 – A Spiral Stair Brush

4 . 2 B r u s h e s | 151

At the Default Value, each step overlaps its adjacent steps
by about 50%. But if the value is increased, the amount of
overlap will begin to decrease, and eventually the steps
will no longer overlap and begin to have some distance
from each other. If you want to make each step actually
taller, you need to use the Step Thickness.

Figure 4.2.8 – Brush Settings for a Spiral Stair

The Spiral Staircase has a Num Steps property like the
other two, but it also has a Num Steps Per 360 property.
This defines the number of steps in one full spiral of the
staircase.

4 . 2 B r u s h e s | 152

The next property is the Sloped Ceiling property. With this
unchecked, the underside of the staircase will just
resemble upside down stairs. If it is checked, it will make
the underside completely smooth. With the Sloped Floor
property, you can change the top surface of the staircase
to be perfectly smooth. You can, in essence, change a
staircase into a curved ramp.

4 . 3 M a t e r i a l s | 153

4.3 Materials

In the Unreal Engine, a Material is an Asset that you can
apply to the surface of a Brush or Mesh, to make that
surface, and thus the geometry behind that surface, look
like it’s made out of a certain substance. For example, you
could resize a Box Brush and use it as a wall. Then, if you
apply a wood Material to the wall, it will look like a
wooden wall.

Note that, while this chapter is focusing on the different
Actor types, Materials aren’t Actors themselves. They are
simply an important property of Mesh and Brush Actors
which is why they are being discussed here.

To apply a Material to a surface, select the Material in the
Content Browser and drag it into the Viewport and onto
the surface you wish to apply it to.

4 . 3 M a t e r i a l s | 154

Figure 4.3.1 – Drag a Material onto a surface to apply it to
the surface

Apply Material to All Surfaces

If you want a Material to be applied to all the surfaces of a
Brush, one way to do this is to select the Material first, and
with that Material selected in the Content Browser, drag
the Brush Actor into the Level, and it will get created with
that Material applied to all the surfaces of the Brush.

If you want to apply a Material to all the surfaces of a
Brush that is already existing in your Level, perform the
following steps:

4 . 3 M a t e r i a l s | 155

1. Make sure you don’t already have the Brush selected.

If you do, just click on one of the other Actors in the
World Outliner.

2. With the Brush unselected, click on one of the

surfaces of the Brush to select just that surface. When
only a surface or surfaces of the Brush is selected,
and not the Brush itself, the Surface Materials,
Geometry, and Surface Properties categories will
appear in the Details Panel.

3. Go down to the Geometry category and click on

“Select,” then “Select All Adjacent Surfaces,” or use
the shortcut Shift+J, and now all the surfaces of the
Brush will be selected.

4. Drag a Material onto the Brush and it will apply that

Material to all the surfaces.

Surface Materials Category

In addition to dragging and dropping, another way you can
apply a Material to a surface is to use the Surface
Materials category of the Details Panel. This works just like
replacing the Static Mesh did in the earlier section.

4 . 3 M a t e r i a l s | 156

Figure 4.3.2 – The Surface Materials category

You can use the dropdown box to select the Material you
want to use. Or you can select the Material you want to
use in the Content Browser and then click on the arrow to
apply it. Or, if you want to find the Material that is
currently applied in the Content Browser, click on the
magnifying glass to go straight to it.

Elements

A single Mesh can have different Materials applied to
different parts of it. When a mesh gets created in a 3D-
modeling program, such as Maya or 3D Studio Max, if it
has different materials applied to different parts of its
surface, once that mesh gets imported into the Unreal
Editor, each of those sections of surface become known as
Elements, and you will have the ability to apply a different
Material to each Element.

4 . 3 M a t e r i a l s | 157

Figure 4.3.3 – Each Element of a Mesh can have a different
Material

If you drag a Material onto the Mesh through the
Viewport, the Material will only be applied to the specific
Element it was dragged onto. In the Details Panel, in the
Materials category, there will be one Element for each
Material, and you can set them each individually.

Textures

We won’t go into too much detail about Textures in this
beginner-level book, but just know that Textures are what
Materials are made of. A Material is made up of one or
more Textures, and each Texture is just an image file that
defines one of the properties of the Material. So one
Texture may be the actual colors of the Material, while
another Texture maps its smoothness or roughness, and

4 . 3 M a t e r i a l s | 158

so on. This data is combined to form the composite
Material.

The Textures dropdown in the Materials category of the
Details Panel will show you the Textures that make up the
currently applied Material. If you select one, it will take
you to that Texture in the Content Browser.

Surface Properties Category

When a Material is applied to the surface of a Brush, and
you select that surface, there will be a Surface Properties
category in the Details Panel. Before we discuss that,
however, you need to understand how the axes of a
Material are labeled. A Material is a 2-dimensional object,
and normally you would use X and Y as the names of the
axes of a 2D object. However, X and Y are already being
used to describe two of the axes of our Levels. To avoid
confusion, the letters U and V are used for the axes of a
Material.

4 . 3 M a t e r i a l s | 159

Figure 4.3.4 – The Surface Properties category

At the top of the Surface Properties category is a section
where you can pan the Material across the surface of the
object. The first row of buttons is used to pan the Material
along its U-axis. The different values represent how much
to pan with each click. The last column can be used to
enter a custom amount. The second row of buttons is used
to pan the Material along the V-axis.

Below that is a section where you can rotate the Material
relative to the surface it’s on. You can toggle which
direction the Material will rotate, either clockwise or
counterclockwise, and then there are buttons to rotate it
45 degrees, 90 degrees, or a custom amount.

4 . 3 M a t e r i a l s | 160

To the right of that is a section where you can flip the
Material, either along the U-axis or the V-axis.

Material Scaling

When you scale an Actor, the Material that is applied to it
will get scaled as well, meaning it will get stretched or
compressed. Even if you scale the Actor first, and then
apply the Material, the effect will be the same.

With Static Meshes, there’s no way around this. Brushes,
however, are a bit more flexible. If the Material on a Brush
surfaces gets scaled, you can see it in the Details Panel, in
the Scale section of the Surface Properties category. To
reset the scaling, you simply need to set the Scale property
back to a 1:1 ratio, and then click the Apply button.

With Brushes, you can edit the dimensions directly,
instead of having to rely on scaling. When you change the
size of a Brush in this way, it doesn’t change the scale ratio
of the Material. So if you use the X, Y, and Z properties of
the Brush, under the Brush Settings category, to change
the size of the Brush, no matter what size you make the
Brush, the ratio will remain 1:1.

4 . 4 L i g h t s | 161

4.4 Lights

In Unreal Engine, a Light is simply an Actor that will
generate light for your Level. They are not meant to
represent the object producing the light, only the light
itself. You would use a Mesh for, say, a lamp or a flashlight
and then use a Light Actor to produce the light itself.

Overview of Light Types

There are four types of Light Actors in Unreal. The first of
these is the Directional Light Actor. The Directional Light
Actor is used to emulate light coming from an extremely
long distance away, such as outer space. All the light will
hit the level at the same angle, meaning all shadows
produced by this light will be parallel. This Actor is used
primarily for sunlight and moonlight.

4 . 4 L i g h t s | 162

Figure 4.4.1 – The four Light Actors available in Unreal

Next is the Point Light. The Point Light will produce light
that emanates in all directions. This is useful for mimicking
the light coming from a light bulb, or fire, for example.

The Spot Light, on the other hand, will emit light in the
shape of a cone. This is like the light coming from a
flashlight, or, as the name suggests, a spot light, like they
use at the theatre.

The Sky Light Actor is used to emulate the light that gets
reflected off of the atmosphere, and other distant objects.
When light comes from the sun or moon, a lot of it comes
through as direct sunlight or moonlight. That’s what the
Directional Light Actor mentioned above represents. But
some of that sunlight or moonlight hits particles in the
atmosphere, or clouds, or distant mountaintops, and then
gets reflected off those objects at a different angle. The
Sky Light Actor represents that light that gets scattered in
the atmosphere, or reflected off of other objects, and that
comes through as weaker, indirect sunlight or moonlight
at all different angles. In simpler terms, you could say it
represents the faint glow of the atmosphere.

4 . 4 L i g h t s | 163

Building the Lighting

Changes to a Level will not affect the lighting like they
should until the Editor is told to build the lighting.

Building the lighting just means that the Engine runs a lot
of calculations to determine how the light and shadows
should now look on objects based on the changes that
have occurred since the last time the lighting was built.

To build the lighting, simply go up to the Toolbar and click
on the Build button. The reason the Editor has you do this
manually is because when you start to have many Actors
and/or Lights in your Level, the build can take quite a while
to perform. So, even if it only took ten seconds, you
wouldn’t want to have to wait those ten seconds every
time you moved an Actor in your Level. This allows you to
build only when you’re ready.

Figure 4.4.2 – The Build button

4 . 4 L i g h t s | 164

Directional Light

The Directional Light is used to represent sunlight or
moonlight. It has several properties that can be viewed
and edited in the Details Panel.

Figure 4.4.3 – A Directional Light Actor

One of these properties is the Light’s Mobility. If a Light is
Static, that means that not only can it not move, it can’t
change color, or brightness, or any other property while
the game is running. If a Light is Stationary, it still can’t
move, but it can change its color, brightness, or other

4 . 4 L i g h t s | 165

properties during the game. If a Light is Moveable, it can
move and change its other properties during the game. As
you move to the right along these three settings, they get
more flexible in terms of what the Light can do, but they
also demand more resources from the processor.

Intensity

In the Light category of the Details Panel, there are several
more properties of the Light that can be edited. The first of
these properties is Intensity. This controls the brightness
of the Light. Increasing the Intensity makes the Light get
brighter and decreasing the Intensity makes the Light get
dimmer.

Figure 4.4.4 – The Light category properties of a
Directional Light

4 . 4 L i g h t s | 166

Light Color

The next property is the Light Color. By default, the color
of a Light is white, but this can be changed. There are two
ways to change the Light Color property. One way is to
click on the triangle to the left of the property name and
expand the RGB menu. With the RGB menu, you can
adjust the amount of red, green, and blue in the Light to
determine its overall color.

The second way to edit the Light Color is to click on the
strip, to the right of the property name, that previews the
color. This will open the Color Picker. The Color Picker is
available in several places in the Unreal Editor where there
is a need to select a color.

4 . 4 L i g h t s | 167

Figure 4.4.5 – The Color Picker

The Color Picker actually gives you several ways in which
you can select a color. You can select one from the color
wheel. You can adjust the saturation and the brightness
using a pair of sliders. You can set the Hue, Saturation, and
Brightness values directly. It is another place where you
can set the Red, Green, and Blue values. And finally, you
can use the hexadecimal representation of a color if you
wish.

4 . 4 L i g h t s | 168

Temperature

The next two properties relate to the Temperature of the
Light. Temperature changes the color of the Light based on
how hot you tell the Engine the light source is supposed to
be. By default, Temperature is not used, but if you want to
use it, you can check the Use Temperature property.

If you’ve ever looked at the fire in a fireplace, for example,
you will notice it’s made up of different colors. Most of it is
red, but as you go inwards, it starts to get more orange,
and then you may see wisps of purple and blue. The bluish
parts are actually the hottest parts of the fire. So as the
Temperature setting is decreased, the Light will shine
redder, and as it is increased, the Light will shine bluer.

Affects World

The next property is Affects World. This simply toggles
whether the Light is enabled or disabled. If this is
unchecked, it will be as if the Light isn’t even in the Level.

Cast Shadows

The next property is Cast Shadows, which determines if
the Light will cause shadows to be cast when objects block
the Light’s path. You would want this checked for a more
realistic environment. However, shadows are processor-
intensive, so if you were in need of performance savings

4 . 4 L i g h t s | 169

you might choose to uncheck this for some of the Lights in
your Level.

Indirect Lighting Intensity

The last property in the Light category is Indirect Lighting
Intensity. If some light gets reflected off of another
surface, that reflected light is called “indirect lighting” and
can also light up objects in the Level. This property will
determine how much this reflected light affects the other
objects it shines upon.

Point Light

The Point Light emanates light in all directions. It has many
of the same properties that the Directional Light has, with
a few additional ones as well.

4 . 4 L i g h t s | 170

Figure 4.4.6 – The Light category properties of a Point Light

The first of these is the Attenuation Radius. This
determines how far from the source the Light will still
affect objects in your Level. In the Level Editor, this is
represented by a blue sphere. The higher the Attenuation
Radius, the larger the sphere will be, and the farther the
light will extend from its source.

4 . 4 L i g h t s | 171

Figure 4.4.7 – The attenuation sphere surrounding a Point
Light

The next two properties are Source Radius and Source
Length. The light from a Point Light will actually emanate
from a single point in the Level. However, let’s say you
have a Light that is supposed to be coming from a long,
thin fluorescent bulb, and it is above a very shiny floor. If
there were a reflection of the bulb in the floor, you would
want it to be in the same shape as the bulb. So you can use
the Source Radius and Source Length properties to adjust
the size and shape that the light source will appear in
reflections.

4 . 4 L i g h t s | 172

Spot Light

The Spot Light is very similar to the Point Light, except that
instead of shining light in all directions, it shines it in a
specific direction, in a cone shape. The Spot Light has all
the same properties as the Point Light, with the addition of
two more properties - the Inner Cone Angle and the Outer
Cone Angle.

Figure 4.4.8 – A Spot Light Actor

4 . 4 L i g h t s | 173

Within the Inner Cone of the Spot Light, the light will be at
its brightest and will be just as bright at any spot within
the Inner Cone. From the outer edge of the Inner Cone to
the outer edge of the Outer Cone, the Intensity of the light
will gradually fall off to nothing.

So you can use the Inner Cone Angle and the Outer Cone
Angle to set the size of these cones and determine how
much of the light is at full brightness and how much of the
light is part of the gradual falloff portion.

Sky Light

The Sky Light is used to represent the reflection of light
from the atmosphere or far away objects in the sky such as
clouds or mountaintops. To determine at what distance
this Light should appear to emanate from, we need to
define at what distance the sky should be considered to
start at.

4 . 4 L i g h t s | 174

Figure 4.4.9 – A Sky Light Actor

By default, the Sky Light’s Source Type property will be set
to “SLS Captured Scene,” which just means that the sky
will be defined as any point that is the Sky Distance
Threshold away from the Sky Light Actor. So if the Sky Light
is placed at the center of the Level, with a Sky Distance
Threshold of 150,000, you are saying that the sky should
begin 150,000 units from the center of the Level.

There is also the option to change the Source Type to “SLS
Specified Cubemap,” and then provide a file called a
Cubemap to define the area that should be considered the
sky. However, Cubemaps are beyond the scope of this
beginner-level book and won’t be covered.

4 . 5 A t m o s p h e r i c F o g | 175

4.5 Atmospheric Fog

The Atmospheric Fog Actor is used to add a realistic
looking atmosphere to a Level. The Atmospheric Fog Actor
can be found in the Visual Effects tab in Place Mode of the
Modes Panel.

The Directional Light Actor can be used to represent
sunlight, but this alone won’t make the Level look like it’s
outside. Atmospheric Fog will add a blue sky and a sun
disc, and will cause objects to get a little foggy when they
are far away in the distance.

Figure 4.5.1 – The Atmospheric Fog Actor adds an
atmosphere to the Level

4 . 5 A t m o s p h e r i c F o g | 176

Sun Disc

By default, the sun disc of the Atmospheric Fog will appear
on the horizon, giving a look of sunrise or sunset. But it is
possible to combine the Atmospheric Fog Actor with the
Directional Light Actor, which will cause the sun to appear
in the sky. To do so, check the property Atmosphere Sun
Light of the Directional Light Actor. This property can be
found in the Light category.

Figure 4.5.2 – Here, the Engine is using the rotation of the
Directional Light to determine where to place the sun disc
in the sky

4 . 5 A t m o s p h e r i c F o g | 177

If the Atmosphere Sun Light property is checked, the
Atmospheric Fog will use the rotation of the Directional
Light to determine where the sun disc should be placed in
the sky. The Engine will look at the direction that the light
rays from the Directional Light are set to hit the Level, and
then calculate where in the sky the Sun should be for that
to make sense. If you use the Rotation Tool on the
Directional Light to change the angle of the light rays, it
will change the location of the sun disc in the sky.

Atmospheric Fog Properties

The first property under the Atmosphere category is Sun
Multiplier. The higher its value, the brighter the sky and
the fog will appear. In other words, you can use it to make
the Level look more or less sunny.

4 . 5 A t m o s p h e r i c F o g | 178

Figure 4.5.3 – The properties of an Atmospheric Fog Actor

The next three properties affect the fog only. They are also
somewhat subtle in their effects, especially when the fog
is far away. The Fog Multiplier property affects how much
the light affects the fog. Higher values will make the fog
seem brighter. The Density Multiplier affects how dense
the fog is. Higher values will make the fog denser and
lower values will make it less dense. The Density Offset
affects the opacity of the fog. Higher values will make the
fog more opaque, while lower values will make the fog
more transparent. Basically, these three properties will
make the fog seem more or less thick in subtly different
ways.

4 . 5 A t m o s p h e r i c F o g | 179

The next property is Distance Scale. This will affect the
scale of the units of any other properties of the Actor that
have to do with distance. For example, changing the
Distance Scale from 1 to 2 will cause any distance units to
be double in length. Setting the Distance Scale higher is
useful when you have a large Level and it would be easier
to work with larger units of distance.

The Altitude Scale is just like the Distance Scale except it
only affects the Z-axis, whereas the Distance Scale affects
all three dimensions.

Next, is the Ground Offset property. This tells the Engine
where sea level should be considered to be at in our Level.
This is important to the Atmospheric Fog Actor, as the fog
will only appear at places above sea level. The default
value is -100,000. This is saying that sea level starts at -
100,000 on the Z-axis. So if the ground of our Level is
placed at 0 on the Z-axis, this means that our Level is
100,000 centimeters, or 1000 meters, above sea level.

The Start Distance property controls how far away from
the camera the Level will start to appear foggy. Higher
values will make the fog appear distant and lower values
will make the fog appear close.

The Sun Disc Scale property is very straightforward. It
simply defines the size of the sun disc. Increasing its value

4 . 5 A t m o s p h e r i c F o g | 180

will make the sun appear bigger in the sky and decreasing
its value will make the sun appear smaller.

Figure 4.5.4 – Setting the Sun Disc Scale to a high value will
make the sun appear large in the sky

4 . 6 P l a y e r S t a r t A c t o r | 181

4.6 Player Start Actor

If a Level does not contain a Player Start Actor, the player
will begin the Level at position (0,0,0). If you want to have
control over where the player will start the Level, you
need to place a Player Start Actor.

The Player Start Actor can be accessed from the Modes
Panel under the Basic tab. Wherever you place it is where
the player will start when the Level begins. It can also be
used to specify the direction the player should be facing
when the Level starts. The light blue arrow coming out of
the Actor indicates the direction. You can rotate the Actor
to change the direction the arrow is pointing.

4 . 6 P l a y e r S t a r t A c t o r | 182

Figure 4.6.1 – The Player Start Actor

If you ever place your Player Start Actor somewhere in the
Level where it intersects with another object, the icon of
the game controller will change to a label that says “Bad
Size”. To make sure the player doesn’t start the Level stuck
in something, move the Player Start Actor to a position
where the icon shows the controller instead.

Figure 4.6.2 – If the Player Start Actor intersects with
another object, it will display a “Bad Size” label

While you are developing your Levels, you will often want
to test something or look at something in-game right in

4 . 6 P l a y e r S t a r t A c t o r | 183

the spot you are at in the Viewport at that moment
instead of wherever the Player Start Actor might be. To do
so, right-click in the Viewport, and then choose Play From
Here towards the bottom of the menu.

If you want to move around the Viewport and continually
start the Level at wherever you are at that moment, you
can go to the drop-down menu to the right of the Play
button and choose to Spawn Player At… > Current Camera
Location. When you want to go back to using the Player
Start Actor, go back to the drop-down menu and choose to
Spawn Player At… > Default Player Start.

4 . 7 C o m p o n e n t s | 184

4.7 Components

Components are various objects or functionality that can
be attached to Actors. There are many different kinds of
Components. Some of the types of Components are
objects that are also used as Actors on their own. For
example, you could attach a Static Mesh as a Component
to another Actor. Or, you could attach a Light as a
Component to another Actor.

Other Components, such as Movement Components, do
not have their own Actor type and are only used as
Components on other Actors. For example, a Rotating
Movement Component attached to an Actor will cause that
Actor to rotate, but doesn’t have any use on its own.

Adding Components

When you want to attach a Component to an Actor, select
that Actor, then go over to the Details Panel and click on
the green button that says Add Component. You’ll get a
long list of different Components you can add, grouped by
category. There will also be a search bar that you can use
to quickly find a type of Component by name.

4 . 7 C o m p o n e n t s | 185

Figure 4.7.1 – Use the Add Component button in the
Details Panel to add a component to an Actor

To add a Static Mesh from the Content Browser as a
Component, after clicking on Add Component, instead of
choosing one of the pre-made meshes available in the
Modes Panel, click on the generic “Static Mesh.” This will
add an empty Static Mesh Component to the Actor. You

4 . 7 C o m p o n e n t s | 186

can then choose which Static Mesh to use by using the
Static Mesh section of the Details Panel.

Component Structure

Below the Add Component button is a section where you
can see the Component structure of an Actor. There is a
parent-child relationship where Components can have
sub-Components which, in turn, can have their own sub-
Components. Sub-components will appear underneath
their parent Components and will be indented further to
the right than their parent. If you move or rotate a
Component, it will move or rotate all of its sub-
Components as well.

Figure 4.7.2 – The Component structure of an Actor. Here,
a Spot Light is a child of a Static Mesh Component, which is
a child of a Cylinder Mesh.

4 . 7 C o m p o n e n t s | 187

Rotating Movement Component

A Rotating Movement Component will cause the Actor it is
attached to, to rotate. It can be added by clicking “Add
Component,” going down to the “Movement” category,
and selecting “Rotating Movement.” If the Mobility setting
of the Actor has been set to Moveable, it will begin to spin
around as soon as the Level begins.

The Rotating Movement Component has some properties
you can edit. The first property is Rotation Rate, which
specifies how much to rotate the Actor and in which
direction. Whatever angle you enter, it will rotate the
Actor that many degrees per second. For example, setting
the Yaw rotation, which means rotation around the Z-axis,
to 180 degrees will cause the Actor to spin one full 360-
degree rotation, in that direction, every two seconds.

Figure 4.7.3 – The properties of a Rotating Movement
Component

Another property you can edit is the Pivot Translation. By
default, with this at (0,0,0), the Actor will rotate around its

4 . 7 C o m p o n e n t s | 188

center. However, you can enter X, Y, and Z values to
change the pivot point to a different location. For
example, a value of 100 for the X-value will cause the
Actor to rotate around a point 100 units, along the X-axis,
from the center of the Actor.

4 . 8 V o l u m e s | 189

4.8 Volumes

In the Unreal Engine, a Volume is a 3D area of space that is
invisible to the player and serves a specific purpose
depending on its type. A Volume is actually another type
of Brush. However, for the remainder of this book, Volume
Brushes will be referred to as simply Volumes in order to
avoid confusion with Geometry Brushes.

4 . 8 V o l u m e s | 190

Figure 4.8.1 – There are several Volumes available in the
Volumes tab of Place Mode

Blocking Volumes

You can access a variety of Volumes from the Volumes tab
in the Modes Panel. For example, a Blocking Volume will
prevent Actors from being able to enter that Volume. So
you can use them as a type of force field, or just to block
off areas of your Level where you don’t intend for players
to go.

A Camera Blocking Volume is just like a Blocking Volume
except it only blocks Cameras. This is useful in third-person
games when you want to keep the Camera confined to
certain parts of the Level.

Trigger Volumes

Perhaps the most important type of Volume is the Trigger
Volume. Trigger Volumes are used to trigger something
called an Event when an Actor enters or exits them. In the
next chapter, Blueprints, you will learn how to define a set
of instructions for the Engine to perform when certain
Events occur.

4 . 8 V o l u m e s | 191

Figure 4.8.2 – A Trigger Volume

For example, if you had a haunted house in your Level, you
could place a Trigger Volume in the doorway of the
entrance, and name it “PlayerEntersHouseVolume.” Then,
using a Blueprint, you would be able to define an Event,
and name it something like “PlayerEntersHouseEvent,”
that should fire off a set of instructions any time the player
enters the PlayerEntersHouseVolume.

Those instructions could be anything you want, such as
playing a scary sound file, or having the Mesh of a bat fly
around the room, or playing a video, etc. The end result
would be that any time the player enters that doorway,
something specific happens.

4 . 8 V o l u m e s | 192

To give you another example, let’s say you have a racing
game. You could place a Trigger Volume at the finish line
so that when the player reaches that point it will trigger
the Event that handles the end of the race.

Pain Causing Volumes

A Pain Causing Volume will cause Damage to an Actor who
enters that volume. For example, you could surround a fire
with a Pain Causing Volume so that a player takes Damage
if they “enter the fire.” Damage is a built-in concept in the
Unreal Engine, and you can use Blueprints to define what
happens when an Actor takes Damage, such as subtracting
from their health based on the amount of Damage done.

The first property of Pain Causing Volumes is simply called
Pain Causing. This will determine if the Volume will
actually apply Damage to Actors that enter it. By
unchecking this, it will disable the Pain Causing feature of
the Volume.

4 . 8 V o l u m e s | 193

Figure 4.8.3 – Properties of a Pain Causing Volume

The next property is Damage Per Second. This determines
the rate at which the Actor inside the Volume is damaged.
But note that it does not determine the interval at which
the Damage is applied. That is set by the Pain Interval
property.

For example, with them both set to 1, every second a
point of Damage will be applied. If the Pain Interval was
changed to 0.5, then Damage would be applied every half-
second. However, now only half a point of Damage would
be applied each time, so that, overall, the Actor is still only
receiving 1 point of Damage per second. If the Pain
Interval was changed to 2, then Damage would only be
applied every 2 seconds, but it would apply 2 points of
Damage each time.

An easy way to calculate how much Damage will be
applied at each interval is to multiply the two values
together. So if the Damager Per Second is 2, and the Pain

4 . 8 V o l u m e s | 194

Interval is 4, then 8 points of Damage will be applied at
each interval.

The Damage Type allows you to change the overall way
that Damage by the Volume is handled by the Engine.
However, in almost all cases, you will just want to leave
this on the default.

The Entry Pain property specifies whether or not Damage
should be applied to the Actor immediately upon entering
the Volume. With Entry Pain checked, the Actor will
receive Damage immediately and then again after every
interval. With Entry Pain unchecked, the Actor will not
receive any Damage until the first interval has elapsed.

Kill ZVolume

The Kill ZVolume will destroy any Actor that enters it. It is
useful for defining any places in your Level that mean
instant death. For example, if you had a pit of lava in your
Level, you might want to surround the pit with a Kill
ZVolume. Or if you wanted to kill a player that had fallen
off a ledge into a bottomless pit, you could use a Kill
ZVolume.

You can define in Blueprints what should happen when the
player is destroyed, such as displaying a Game Over menu.

4 . 8 V o l u m e s | 195

Physics Volume

The Physics Volume allows you to change the physics of
the space within the Volume.

Its first property is Terminal Velocity. Terminal velocity is
the maximum speed that something can reach when it’s
falling, or, put another way, the maximum speed
something can reach due to the forces of gravity.

Figure 4.8.4 – Properties of a Physics Volume

When something falls, if nothing interrupts the fall, the
object will continue to accelerate until it reaches the
Terminal Velocity, and then it will no longer accelerate; it
will fall at a constant rate of speed. In the real world, all
objects falling toward the Earth have the same terminal
velocity. But this value will be different on other planets
that have different amounts of gravity.

4 . 8 V o l u m e s | 196

So you could use the Terminal Velocity property to better
mimic an alien world, or you could use it to produce other
effects. For example, reducing the Terminal Velocity of the
Volume to something really low, so that objects fall very
slowly through it.

The next property is Priority. This is used when two Physics
Volumes are overlapping, in order to determine which
Volumes’ settings should be used for that overlapping
space. The higher the value, the higher the priority. So if a
Physics Volume with a Priority of 0 overlapped a Physics
Volume with a Priority of 1, only the settings for the
Volume with a Priority of 1 would be honored within the
overlapping space.

The next property is Fluid Friction. This is used to mimic
the friction that occurs when something passes through
something semi-solid. For example, trying to walk through
water is a lot more difficult than walking through air,
because there is a lot more friction. Walking through mud
is more difficult than walking through water. The higher
the Fluid Friction, the slower that objects will pass through
it.

Last, is the Water Volume property. This specifies whether
or not the space that the Volume is defining is supposed to
be occupied by water or a water-based liquid. For
example, this could be used in Blueprints to specify that

4 . 8 V o l u m e s | 197

anytime the character is within a “water” volume that the
character should begin to swim.

4 . 9 C h a p t e r 4 Q u i z | 198

4.9 Chapter 4 Quiz

1. If you drag a new mesh Actor into your Level and
position it in the air, what two default settings of a
mesh must be changed so that the mesh will fall to
the ground when the Level begins?

2. True or False: Making copies of a Brush Actor will
increase the memory requirements for that Level.

3. How do you select just a single surface of a Brush?

4. In Unreal, when a mesh has different Materials
applied to different sections of its surface, what are
those different sections called?

5. True or False: When you scale an Actor, any Material
applied to it automatically gets scaled as well.

6. In Unreal, what is the best type of Light Actor to use
to represent sunlight?

7. In Unreal, what is the best type of Light Actor to use
to represent the light from a light bulb?

8. In Unreal, what is the best type of Light Actor to use
to represent the light from a flashlight?

4 . 9 C h a p t e r 4 Q u i z | 199

9. In Unreal, what is the best type of Light Actor to use

to represent the light that is reflected off the
atmosphere?

10. What Actor is used to add a blue sky and a sun disc
to your Level?

11. True or False: All Components can also function as
Actors on their own.

12. In Unreal, what do you call a 3D area of space that is
invisible to the player and serves a specific purpose
depending on its type?

13. If you wanted to have a small fire in your Level apply

Damage to an Actor, what is the easiest way to

accomplish this?

4 . 9 C h a p t e r 4 Q u i z | 200

Answers

1. The Actor’s Mobility will need to be changed from
Static to Moveable. Also, the Simulate Physics
property will need to be set to True.

2. True

3. First, make sure the Brush isn’t currently selected.
Then click on the individual surface you wish to
select.

4. Elements

5. True

6. Directional Light

7. Point Light

8. Spot Light

9. Sky Light

10. Atmospheric Fog

11. False. While many Components are also Actors
themselves, some, such as the Rotating Movement
Component, are not.

4 . 9 C h a p t e r 4 Q u i z | 201

12. Volume

13. Surround the fire with a Pain Causing Volume.

C h a p t e r 5 - B l u e p r i n t s | 202

5
Blueprints

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 203

5.1 Introduction to Blueprints

In the Unreal Engine, a Blueprint is an Asset that contains
data and instructions.

So far, this book has mainly shown you how to construct
environments that can be used for games. But the
environment is only one half of a game. The other half is
the logic that determines how the environment can be
interacted with and how the game is actually played. This
is where Blueprints come into play.

Using Blueprints, you can keep track of health, energy,
score, etc. You can also specify game logic, like the
requirements for completing a puzzle, what happens when
that puzzle is complete, what happens when you shoot an
enemy, and so on.

Level Blueprint vs Blueprint Classes

There are two main types of Blueprints - The Level
Blueprint and Blueprint Classes.

A Level Blueprint is used to hold data and instructions for a
particular Level. It might hold data such as the time
remaining to complete the Level, or the number of keys
you’ve collected in that Level, and so on. It’s also used to
store instructions that pertain only to that Level. For

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 204

example, let’s say there was a spot in a Level where there
was a bridge and when the player crosses that bridge, a
meteor flies across the sky. If that’s a one-time unique
occurrence just for that spot in that Level, it would make
sense to store those instructions in the Level Blueprint for
that Level.

Blueprint Classes are a way to turn any Actor or Asset into
a Blueprint. This allows you to create objects with custom
traits and behaviors. Let’s say, again, that you are building
a haunted house. And let’s say you want to have a chair
that floats up and down. Let’s also say that you want your
character to be able to shoot the chair and, eventually,
destroy it. You can achieve all of this by creating a
Blueprint Class out of the chair Mesh.

Within the Blueprint, you could specify that the chair
should move straight up and down, over and over again,
starting from wherever it is placed in the Level. You could
also specify that it should contain a variable called Health
with a default value of 100. You could also say that any
time the chair was hit by a projectile, that 10 should be
subtracted from its Health. Finally, you could specify that if
the Health of the chair ever gets to 0 or below, that the
chair should be destroyed.

One of the great things about Blueprint Classes is that you
can use them to create as many copies, or instances, of
your creation as you want. Using the haunted chair as an

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 205

example - once you completed the Blueprint, it would be
available to you in the Content Browser, and then each
time you dragged it into the Viewport, it would create a
new instance of the chair. Each chair would float up and
down, starting from the position they were placed, and
each chair would have their own copy of the Health
variable. So if you damaged one of the chairs, its Health
would be 90, while the other chairs would still have a
Health of 100.

Level Blueprint Editor

To open a Level Blueprint, go up to the Toolbar and
expand the menu of the Blueprints button. Then click on
“Open Level Blueprint.” This will open the Level Blueprint
Editor.

Event Graph

Inside the Level Blueprint Editor is the Event Graph. The
Event Graph is the area of a Blueprint where you script the
logic. If you’re a programmer, the logic can be scripted in
pure code using C++. However, Epic Games has developed
a visual scripting system that allows non-programmers to
script logic and can be convenient even for experienced
programmers.

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 206

Nodes

The scripting system works by using various Nodes, that
each serve a specific purpose, and connecting those Nodes
together. By default, the Level Blueprint starts off with two
commonly used Nodes in the Graph. They are disabled to
start with, but can be used right away by connecting them
to another Node.

The first Node is the Event BeginPlay Node. An Event Node
is a Node that is activated when a certain event occurs. So
an Event BeginPlay Node, inside of a Level Blueprint, will
be activated by the event of the Level first starting. You
can recognize an Event Node by its top strip which will be
the color red and will have an icon of an arrow inside of a
diamond symbol.

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 207

Figure 5.1.1 – The Event BeginPlay Node and Event Tick
Node start in the Level Blueprint by default

The second default Node is also an Event Node. The Event
Tick Node is a Node that is activated on every tick of
gameplay. Before every frame of the game is drawn on the
screen, any logic connected to the Event Tick Node will be
executed. This is useful in situations where you need to
constantly check certain conditions that, when met, will
have an immediate effect on the game, such as the main
character colliding with something harmful.

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 208

Pins and Wires

The icons along the left and/or right sides of Nodes are
called pins. Pins on the left side of a Node are input pins
and pins on the right side of a Node are output pins. Pins
are used to input/output data to and from Nodes and to
specify the order in which Nodes should be executed.

Pins can be connected to one another with wires. To
create a wire, left-click on a pin and then drag the mouse
while still holding the LMB. This will drag a wire out of that
pin. If you hover over another pin and release the LMB, it
will connect the end of the wire to that pin.

Figure 5.1.2 – Wires can be dragged out of pins

Pins with a white icon that looks like a Play button are
execution pins. Execution pins on the left side of a Node
are input execution pins. When a wire connected to an

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 209

input execution pin is activated, it will trigger execution of
that Node. Execution pins on the right side of a Node are
output execution pins. Wires connected to an output
execution pin will activate once that Node has finished
executing. Output execution pins can only be connected to
input execution pins and vice-versa. By chaining Nodes
together through their execution pins, you can define a
series of Nodes that should be executed, one after the
other, every time the first Node in the series is activated.
The first Node in a chain will always be an Event Node.

Pins with a circular icon are data pins. Data pins are used
to pass data between Nodes. Output data pins can only be
connected to input data pins and vice-versa. Whatever
data is contained in the output data pin gets sent to the
input data pin it is connected to.

Adding Nodes

To add a new Node to the Event Graph, you will need to
select that Node from the Node Menu. The Node Menu
can be brought up by right-clicking on any empty space in
the Graph, or by releasing the LMB over any empty space
when dragging out a wire from an output execution pin.
When doing the latter, the Node you add will
automatically be connected to the wire.

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 210

Figure 5.1.3 – You can add Nodes from the Node Menu

There are many Nodes available to choose from in the
Node Menu. They are organized into categories, but if you
know at least part of the name of the Node you’re looking
for, you can use the search box at the top of the Node
Menu to search for it.

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 211

Compiling

Before you can test any new logic you have created, you
must compile the Blueprint. Compiling just means that the
Engine will convert the logic into machine code that the
computer can understand. In order to compile the
Blueprint, simply go up to the toolbar of the Blueprint
Editor and click the Compile button. If there is any new
logic that hasn’t been compiled yet, the Compile button
will contain a question-mark icon.

Figure 5.1.4 – The Compile button

Simple Blueprint Example

Here is a simple, albeit non-practical, example of a
Blueprint to help you gain familiarity. The following is a
Level Blueprint whose logic specifies that the game should
exit two seconds after the Level begins:

5 . 1 I n t r o d u c t i o n t o B l u e p r i n t s | 212

Figure 5.1.5 – This logic will cause the game to exit two
seconds after the Level begins

As mentioned earlier, the Event BeginPlay Node will be
executed when the Level first begins. As a consequence,
any Nodes connected to the Event BeginPlay Node
through execution pins will get executed as well.

The Event BeginPlay Node is connected to a Delay Node.
The Delay Node is a Function Node. Function Nodes are
light blue and have an icon of a lowercase “f.” A Function
Node is a Node that performs a specific task when
executed. The task of a Delay Node is to wait for a
specified amount of seconds before passing execution on
to the next Node. In this example, a value of 2 seconds has
been specified. A Delay Node doesn’t delay the execution
of all logic in the game, just within the flow of wires it’s
connected to.

After a two-second delay, execution will pass to the Quit
Game Node which will cause the game to exit.

5 . 2 V a r i a b l e s | 213

5.2 Variables

Variables are what Blueprints use to store data. Just like in
algebra, where you might use a variable named X to store
a number, you can use variables in Unreal to store data.
But in Unreal, variables can hold other kinds of data in
addition to numbers, such as text.

To create a variable in Unreal, first look on the left side of
the Blueprint Editor for the My Blueprint tab. Within the
My Blueprint tab is a Variables sub-tab. Clicking on the
plus sign on that tab will create a new variable which can
then be named.

Figure 5.2.1 – You can add new variables in the My
Blueprint tab

5 . 2 V a r i a b l e s | 214

Data Types

A variable’s data type determines what kind of data it can
hold. One way of setting the data type is to click on the
rectangle to the left of the variable’s name, and then
choose the data type from the menu that appears. The
menu will contain a list of all the basic data types in
Unreal. Each data type can be identified by a unique color.

Figure 5.2.2 – Each data type in Unreal can be identified by
a unique color

5 . 2 V a r i a b l e s | 215

The first one on the list is the Boolean data type, which is
identified by the color red in Unreal. A Boolean data type
is simply used to hold a value of True or False and those
are the only two values it can hold. Because of this, a
Boolean data type takes up very little space in memory.

The next three data types in the list - Byte, Integer, and
Float - are all used to hold numbers. But they each hold
different kinds of numbers and each take up different
amounts of space in memory as a result.

A Byte is the smallest data type of the three, meaning it
takes up the least amount of space in memory. This is
because a Byte can only store a whole number between 0
and 255, inclusive. So if you needed a variable to store, for
example, some choice that the player makes in the game,
and there are only a limited amount of choices the player
can make, a Byte might be a good data type to use to store
this choice, with each number corresponding to one of the
choices the player could make.

Like the Byte, the Integer is used to store whole numbers.
But unlike the Byte, it doesn’t have the restriction of that
value being only between 0-255. Because of this, however,
it will also use more memory than a Byte.

Float is short for “floating point number.” A “floating
point” is just another name for a decimal point. So a Float
is used to hold numbers that have a decimal place. Unlike

5 . 2 V a r i a b l e s | 216

the Integer, it can be used to store numbers that aren’t
whole, such as 3.5, or 24.743, etc. Because of this, it
requires more memory than the Integer data type.

The next three data types are used to store text. The
largest of the three is the Text data type. Because this
requires the most amount of memory of the three, it
should only be used for its specific purpose, which is to
store data that will be displayed on the screen to the
player. The Text data type is useful for displaying text
because it has, among other things, localization features,
which allows it to display text in a way that is custom for
that player’s region or language.

The String data type is used to store text that you can
perform manipulation functions on. These functions
include extracting a substring of text from the larger
portion, changing the case of the text, meaning uppercase
or lowercase, reversing the text, and so on. The String type
is smaller than the Text type, so if you might have a need
to perform these functions on the text, and the text isn’t
going to be displayed on the screen, you would store the
text in a String variable.

The smallest of these three data types is the Name data
type. The Name type doesn’t have the localization or other
features that the Text data type has to display text on the
screen, and it also doesn’t have the manipulation
functions of the String data type. However, it does take up

5 . 2 V a r i a b l e s | 217

the least amount of memory of the three. So you would
use the Name data type for any text that doesn’t require
the features of the String or Text data types.

The Vector data type is used to store three Float values.
This is useful for defining a point in space, an RGB value, or
anything that is defined with three values.

The Rotator data type is used to store numbers that
describe an object’s rotation in 3D space.

The Transform data type is used to hold data that
describes an object’s position, rotation, and scale in 3D
space.

Get Node

A Get Node is a Node whose only purpose is to output the
value of a variable. It will contain just a single pin, an
output data pin. It has no execution pins. A Get Node can
be thought of as always active, because it will output the
current value of the variable, every tick of gameplay, to
whatever pin it is connected to.

To create a Get Node for a specific variable, left-click on
the variable in the My Blueprint tab and drag it into the
Event Graph. When you release the LMB, click on “Get”
from the menu that appears. This will create a Get Node.

5 . 2 V a r i a b l e s | 218

Another way to do this is to hold down the Ctrl key when
dragging the variable into the Graph, and then when you
let go of the mouse, it will automatically create a Get Node
for the variable.

Figure 5.2.3 – A Get Node for a Float variable named
“Delay Duration”

Set Node

A Set Node is used to change the value of a variable. It
contains an input data pin which is used to specify what
value the variable should be changed to. The value will be
changed once the Node is activated through its input
execution pin. The Node also contains an output data pin
so the new value can be passed on to another Node if you
wish.

To create a Set Node for a specific variable, left-click on
the variable in the My Blueprint tab and drag it into the
Event Graph. When you release the LMB, click on “Set”
from the menu that appears. This will create a Set Node.
Another way to do this is to hold down the Alt key when
dragging the variable into the Graph, and then when you

5 . 2 V a r i a b l e s | 219

let go of the mouse, it will automatically create a Set Node
for the variable.

Figure 5.2.4 – A Set Node for a Float variable named
“Delay Duration”

Default Value

A default value is a value that will be assigned to a variable
as soon as the variable is created. The default value can be
set in the Details Panel, on the right side of the Blueprint
Editor, under the “Default Value” category. If you see the
text “Please compile the blueprint” it means that you
haven’t compiled the Blueprint since that variable was
created. Once you compile the Blueprint, that text will go
away and a box will appear where you can enter the
default value.

5 . 2 V a r i a b l e s | 220

Figure 5.2.5 – When you create a new variable, you will
need to compile the Blueprint before you can give that
variable a default value

Updated Blueprint Example

Expanding on the Blueprint example from the previous
section, here is an example of using a variable to specify
the duration that the Delay Node should delay:

Figure 5.2.6 – The Duration property of the Delay Node is
now set by a variable

The Set Node sets a Float variable named “Delay Duration”
to a value of 5.0. A Get Node for the “Delay Duration”
variable passes the value of that variable to the Delay
Node. So now, the Delay Node will delay for 5 seconds
instead of the 2 seconds that were “hardcoded” into the
Node in the previous example.

5 . 2 V a r i a b l e s | 221

Variable Properties

In addition to the default value, there are other properties
of variables that you can set in the Details Panel. Some
data types will have different properties than others.

Figure 5.2.7 – Properties of a Boolean variable

The first two properties, Variable Name and Variable Type,
are the same properties that you can edit in the My
Blueprint tab, so the Details Panel is just another place
where you can set them.

The Editable property will be covered in the section on
Blueprint Classes.

5 . 2 V a r i a b l e s | 222

The Tooltip property allows you to give a detailed
explanation of what the variable is and what it is used for.
This is useful not only when you are working on teams - so
that the people you are working with can more quickly
understand what you’ve created - but also for yourself, so
that when you come back to the variable at a later time,
you can quickly remember its use.

To create a tooltip, just type the message into the Tooltip
box, and when the variable is hovered over in the My
Blueprint tab, or when a Set node for that variable is
hovered over, it will display the tooltip message that
you’ve created.

The Expose on Spawn and Expose to Matinee properties
involve more advanced topics and won’t be covered in this
book.

The Private property determines if other Blueprints can
access the variable. With this unchecked, other Blueprints
will be able to access the variable. With it checked and set
to Private, other Blueprints would not be able to access
the variable.

The Category property allows you to group your variables
into categories if you wish. This is for organizational
purposes within the Editor. To place a variable into a
category, select an existing one from the dropdown or
create a new one by typing its name into the box. Once a

5 . 2 V a r i a b l e s | 223

variable has been placed into a category, it will appear
under a heading for that category in the My Blueprint tab.

The next two properties are Slider Range and Value Range.
These properties are only for numerical data types.

Starting with the Value Range property, this allows you to
set a minimum and maximum value that the variable is
allowed to contain. If you set the Value Range to 0 to 10,
you won’t be able to set the variable to anything other
than those numbers and the numbers in-between. If you
go down to the Default Value, for example, and try to set
that to 11, it won’t let you.

The Slider Range property determines what value you can
set the variable to when using a slider. If you set the range
to 3 to 5, for example, and try to use the slider on the
Default Value to set the number, it will only go between 3
and 5. But if you enter a number manually, you can still
enter any number not restricted by the Value Range or the
limits of the data type itself.

The Replication property is used in multiplayer games that
are running over a network. This specifies whether or not
the variable should be replicated over the network. So if
it’s a variable that would affect all the players in the game,
it would need to be replicated over the network. But if it’s
a variable that only affects an individual player, it would
probably not need to be replicated over the network.

5 . 3 A r r a y s | 224

5.3 Arrays

An array is a list of variables of the same data type. You
can have an array of Integers, an array of Strings, and so
on.

This is useful whenever you need to store a group of
something. For example, you could use an array of
Integers to store the combination to a safe. Or you could
use an array of Strings to store the dialogue of a character
for a certain scene.

To create an array, first create a regular variable with the
data type you want the array to use, and then click on the
grid icon to the right of the Variable Type property in the
Details Panel.

Figure 5.3.1 – Click the grid icon to make a variable an
array

5 . 3 A r r a y s | 225

Arrays are made up of slots that each store one of the
values of the list. The proper term for one of these slots is
an index. Arrays in Unreal are “zero-based” which means
the first index is 0. So the second index is 1, the third index
is 2, and so on. Each value stored in the array is known as
an element of the array.

ForEachLoop Node

The ForEachLoop Node is used to iterate through the
elements of an array. It has an input pin called Array
where you can input the array you wish to use. It has an
output execution pin called Loop Body that will be
activated once for each element in the array. Each time
the Loop Body pin fires, the Node’s Array Element pin will
contain the value of the current element, and the Array
Index pin will contain the index number of the current
element. The output execution pin Completed will fire
once all the elements have been iterated through.

The following example will loop through an array of Strings
named “My Inventory” and output each value to the
screen:

5 . 3 A r r a y s | 226

Figure 5.3.2 – The ForEachLoop Node will loop through
every element of an array

Add Node

The Add Node can be used to add another element to the
end of an array. It has an input pin for the array itself and
an input pin for the variable containing the value to add.

In the following example, whatever value the variable
“New Item” contains will be added to the end of an array
named “My Inventory” whenever the P key is pressed on
the keyboard:

5 . 3 A r r a y s | 227

Figure 5.3.3 – Pressing P will cause New Item to be added
to the end of the My Inventory array

Insert Node

The Add Node will add a new element to the end of the
array, but to add a new element somewhere in the middle
you need to use the Insert Node. It has a pin to specify the
array, a pin to specify the value you want to add, and a pin
to specify at which index the value should be inserted.

Figure 5.3.4 – The Insert Node

5 . 3 A r r a y s | 228

When a value is inserted, the length of the array increases
by one, all the values at the specified index and above get
moved one index higher, and then the new value is
assigned to the specified index. So the Insert Node inserts
values in-between other values without erasing any data.

Set Array Element Node

If you want to replace the value of a certain index, you
need to use the Set Array Element Node. Unlike the Insert
Node, this Node will overwrite the value at the specified
index and won’t change the location of any of the other
values.

Figure 5.3.5 – The Set Array Element Node

The Set Array Element Node has a Size to Fit pin. As an
example, let’s say that at the time the Node fires, the array

5 . 3 A r r a y s | 229

being used has 4 elements (indices 0 to 3). Also, let’s say
you specify that you want the new value to go into index
6. If Size to Fit is False, this won’t work, because index 6
doesn’t exist. The game won’t crash, the array simply
won’t change in any way. But if Size to Fit were True in this
scenario, the length of the array would increase to 7, so
that there is an index 6. Index 6 would get set to the new
value specified, and indices 4 and 5 would simply remain
empty.

Removing Elements From an Array

When you want to remove elements from an array, there
are a few ways to do this. The Clear Node simply deletes
all the elements of an array. The Remove Index Node will
delete the element at the specified index, and then shift
any values at higher indexes down one. The Remove Item
Node deletes elements based on their values, deleting any
element whose value matches the one specified. The
Remove Item Node also has a Boolean pin that outputs
True or False based on if any matches were found.

Figure 5.3.6 – The Clear Node

5 . 3 A r r a y s | 230

Figure 5.3.7 – The Remove Index Node

Figure 5.3.8 – The Remove Item Node

Contains Item Node

When you just want to know whether or not an array
contains a certain value, you can use the Contains Item
Node. You specify the value you want to search for and it
will output True if that value was found and False if it was
not.

Figure 5.3.9 – The Contains Item Node

5 . 3 A r r a y s | 231

Find Item Node

If you need to know the index that a certain value is
located at, you can use the Find Item Node. This will return
the index of the first element of the array that matches
the value specified. If no match is found, this will return a
value of -1.

Figure 5.3.10 – The Find Item Node

Length Node & Last Index Node

You can use the Length Node when you want to know how
many elements an array has, and the Last Index Node
when you want to know its highest index number. Because
arrays in Unreal Engine are zero-based, the last index of an
array will always be one less than its length.

Figure 5.3.11 – The Length Node

5 . 3 A r r a y s | 232

Figure 5.3.12 – The Last Index Node

5 . 4 F u n c t i o n s | 233

5.4 Functions

A function is a procedure or routine meant to carry out a
specific task or series of tasks. Functions are not unique to
Unreal Engine. A function is a concept that comes from
mathematics and computer science. In computer science
and programming, a function is a specific block of code. By
extension, in Unreal Engine, a function is a specific Event
Graph of Nodes. The entire Event Graph for a function gets
encapsulated (contained) within a single Node that can
then be used without having to worry about the details
inside it.

To create a new function, go to the My Blueprint tab, look
for the Functions category, and then click on the Add
button. Whenever you create a new function, it will
automatically open that function’s Event Graph and add its
Entry Node. The Entry Node is the Node that will fire
whenever the function is called.

5 . 4 F u n c t i o n s | 234

Figure 5.4.1 – New functions can be added in the My
Blueprint tab

Figure 5.4.2 – The Entry Node for a function named
“Welcome Message”

Function I/O

Functions can have inputs and outputs so that data can be
passed into and out of the function. To add an input or
output, go to the Details Panel and click on the New
button under the Inputs or Outputs category, depending

5 . 4 F u n c t i o n s | 235

on which you want to create. You can then define the
name and data type of the input/output.

Figure 5.4.3 – Clicking on these New buttons will create
either an input or output for your function

When an input is created, looking “outside” of the
function, at its single-node encapsulated form, you will see
the input created as an input pin. “Inside” of the function,
the data that gets passed to that input pin can be retrieved
through a corresponding output pin that gets added to the
Entry Node.

Creating an output variable will create a Return Node
within the function. The Return Node will always be the
last Node of a function, and it will contain input pins for
each of your output variables so that you can pass that
data back out of the function (these will appear as output
pins on the Function Node itself).

5 . 4 F u n c t i o n s | 236

Function Example

As an example, here’s a function that takes a name as
input and then outputs a message using that name:

Figure 5.4.4 – The “inside” of the Welcome Message
function

It has one input - a String variable named “First Name” -
and one output - a String variable named “Message.” It
retrieves First Name from the Entry Node and passes that
to an Append Node where it combines the name with
other Strings to form a greeting. That greeting is then
passed to the Return Node. Here is an example of the
function in use:

5 . 4 F u n c t i o n s | 237

Figure 5.4.5 – The Welcome Message function in use

As soon as the Level begins it will call the Welcome
Message function. The name “David” is passed in as the
value of First Name. This is the value that will be retrieved
from the Entry Node within the function. The message that
is created inside the function, and gets passed to the
Return Node, is the message that is being retrieved here
and then passed to the Print String Node.

Advantages of Using Functions

Using functions has many advantages. The main advantage
is reusability. For example, if you wanted to use the above
Welcome Message function dozens of times throughout
your game, with several different characters with different
names, you don’t want to have to write the logic every
single time, for each character, every time it is used. It

5 . 4 F u n c t i o n s | 238

would be easier to just write it once and be able to use it
over and over again.

Another advantage of functions is editability, meaning it is
much easier to make changes. For example, let’s say you
later decide you want the wording of the welcome
message to be slightly different. If you had the logic in
dozens of places, without using a function, you would have
to manually try and find each of those places and then edit
each one individually. But with a function, you only need
to make the change in one place - in the function itself.

A third advantage is reliability. If you use a function that’s
already been used, and thus tested, over and over again,
there’s a much better chance that that function is free of
mistakes than logic you just wrote. For example, many of
the built-in functions in Unreal Engine have now been
used repeatedly by numerous companies and developers
and thus any bugs they may have once contained have
already been reported and fixed.

A fourth advantage of functions is readability. While the
Welcome Message function example is very small,
functions could contain hundreds or even thousands of
Nodes. But no matter how many nodes a function
contains, it will always get condensed down into just one
Node. So by hiding away the “guts” of your logic in this
way, it makes it much easier to understand the logic of
your game at a high level.

5 . 4 F u n c t i o n s | 239

Function Properties

The Description property is used to briefly explain what
the function does. Whatever this is set to will appear in
the tool tip message that pops-up whenever you hover
over a function. So if you come back to this function later,
or someone you’re working with comes across it, this
makes it much easier to quickly understand what a
function does without having to open it up and analyze its
logic.

Figure 5.4.6 – Function properties

The Category property is used to organize your custom-
made functions. For example, you could assign a function
to a category called “String” and then in the My Blueprint
tab, it will group the function under that category, along
with any other functions you assign to that category.

5 . 4 F u n c t i o n s | 240

The Keywords property can be used to add a list of
keywords to the function which can be useful if you search
for the function later.

If you give the Compact Node Title property a value, it will
display the Function Node in a compact form, with the
value you entered being displayed in the background.

The Access Specifier property is used to specify what
Blueprints are allowed to call this function. With this set to
Public, any Blueprint is allowed to call this function. With
this set to Private, only the Blueprint that the function
belongs to is allowed to call it. For example, if a function
was created in the Level Blueprint, and Access Specifier is
set to Private, you will only be able to call the function
from the Level Blueprint and no other.

The Protected setting is like the Private setting, except that
the function can also be called from Blueprints derived
from the owning Blueprint. Derived Blueprints will be
discussed in the chapter on Players & Input.

The final property deals with the concept of Pure vs.
Impure functions. A Pure function cannot modify any of
the variables of its Blueprint, while an Impure function
can.

5 . 5 F l o w C o n t r o l | 241

5.5 Flow Control

In the Node Menu, under “Utilities,” there is a category
called Flow Control. This category contains several
different Nodes that you can use to control the flow of
execution in your Blueprints. This is essential to creating
logic.

Branch Node

The first node in the list is the Branch Node. The Branch
Node takes in a Boolean value as its input and then
continues execution either through the True output
execution pin if the Boolean value is True, or through the
False output execution pin if the Boolean value is False.

Figure 5.5.1 – The Branch Node

For example, when the player tries to open a door, you
could have a Branch Node with a Boolean variable that

5 . 5 F l o w C o n t r o l | 242

stores whether or not the player has the key. You could
connect the False pin to a Node that will play the sound of
a locked door trying to be opened and connect the True
pin to the sound of a door being unlocked.

Do N Node

The Do N Node means “Do N times” where “N” is the
number of times this Node should allow execution to pass
through it before it begins to block execution. For
example, if N is 5, then the first 5 times execution flows
into the Enter pin it will flow out of the Exit pin. However,
the 6th time and beyond that, the flow will not continue
out of the Exit pin.

Figure 5.5.2 – The Do N Node

So execution will be blocked in a Do N Node after the Nth
time the Node has been activated, unless execution flows

5 . 5 F l o w C o n t r o l | 243

into the Reset pin of the Node. When execution flows into
the Reset pin, the counter will be reset to 0 and the Node
will be able to execute N more times.

The Counter pin will output an Integer representing the
number of times the Do N node has been activated since
the game began or since the last time the Node was reset.

DoOnce Node

The DoOnce Node is just like a Do N Node where N = 1.
With the exception that with the DoOnce Node, you have
the option to have the Node start closed. By having the
Node start closed, this means that execution must flow
through the Reset pin before execution will flow through
the Completed pin, even the first time.

Figure 5.5.3 – The DoOnce Node

5 . 5 F l o w C o n t r o l | 244

DoOnce MultiInput Node

The DoOnce MultiInput Node is like the DoOnce Node
except that it allows for multiple In/Out pairs. Additional
pairs can be added using the “Add pin” button at the
bottom. So if execution flows into the A In pin, it will flow
out of the A Out pin. If execution flows into the A In pin a
second time, without a reset, nothing will happen, but
execution will still be able to flow through the B pins and
the C pins.

Figure 5.5.4 – The DoOnce MultiInput Node

If execution flows into the Reset In pin, all of the pairs will
get Reset. The DoOnce MultiInput Node also differs from
the DoOnce Node in that it has a Reset Out pin that will be
executed when the Reset In pin is executed.

5 . 5 F l o w C o n t r o l | 245

FlipFlop Node

The FlipFlop Node simply alternates between having
execution flow out of the A pin or the B pin every time the
Node is activated. The first time execution flows into the
FlipFlop Node, it will flow out of the A pin, and the second
time execution flows into the FlipFlop Node, it will flow
out of the B pin, and then the third time, it will flow out of
the A pin again, and so on.

Figure 5.5.5 – The FlipFlop Node

The FlipFlop Node has a Boolean output called Is A that
will output a value of True if execution is currently being
routed through the A pin, and False if execution is being
routed through the B pin.

5 . 5 F l o w C o n t r o l | 246

ForLoop Node

With a ForLoop Node, the Loop Body execution output pin
is fired a certain number of times, starting from an Integer
defined by the First Index, and then increasing by 1 until it
gets to the Integer defined by the Last Index. The Index pin
will output an Integer specifying the index of the current
loop. The Completed pin will be executed after the final
loop is completed.

Figure 5.5.6 – The ForLoop Node

ForLoopWithBreak Node

The ForLoopWithBreak Node is just like the ForLoop Node,
except that it is possible to break the loop before it is
finished. If execution flows into the Break pin, the loop will
stop immediately and the remaining loops will not be
executed.

5 . 5 F l o w C o n t r o l | 247

Figure 5.5.7 – The ForLoopWithBreak Node

Gate Node

A Gate Node is a Node that can be set to opened or closed.
When the Gate is open, execution flow entering the Enter
pin will flow out of the Exit pin. When the Gate is closed,
any execution flow entering the Node will stop there, and
the Exit pin will not fire.

5 . 5 F l o w C o n t r o l | 248

Figure 5.5.8 – The Gate Node

The next three input pins are used to set the status of the
Gate. Any time execution flows into the Open pin, it will
open the Gate, and any time execution flows into the
Close pin, it will close the Gate. If execution flows into the
Toggle pin it will set the status to whatever it is currently
not. So if the Gate was open, the Toggle pin would close it,
and if the Gate was closed, the Toggle pin would open it.
The Start Closed property will determine whether the Gate
starts out Open or Closed.

MultiGate Node

With a MultiGate Node, execution enters a single
execution input pin, but it will flow out of only one of the
execution output pins. You can use the Add pin button to
add as many execution output pins as you like.

5 . 5 F l o w C o n t r o l | 249

Figure 5.5.9 – The MultiGate Node

If Is Random is unchecked or set to False, then execution
will flow out of the output pins in sequential order,
starting at the Start Index. With a Start Index of -1, it’s the
same as saying that you’re not specifying a Start Index, so
it will just go with the default which is 0. Loop will
determine whether or not the sequence should start over
or if the Node should just block further execution flow.

If Is Random is set to True, then instead of going in
sequential order, output will flow out of the pins in
random order until each pin has been used. At that point,
the Node will either need to be reset or start a new loop,
depending on what Loop was set to.

5 . 5 F l o w C o n t r o l | 250

Retriggerable Delay Node

The Retriggerable Delay Node is just like the Delay Node,
except that the delay can be reset or “retriggered” if
another pulse enters the execution input pin before the
delay has finished counting down. So if the duration of the
delay is set to 10 seconds, and the Node is activated, and
then after 7 seconds the Node is activated again, the delay
will start counting down from 10 again.

Figure 5.5.10 – The Retriggerable Delay Node

Sequence Node

With the Sequence Node, every time execution flows into
the Node it will flow out of every single one of the output
pins. Again, you can use the Add pin button to add as
many output pins as you want. When execution flows into
the Node, it will fire each of the pins sequentially, however
it will do so without any delay, so from the player’s
perspective it will appear as if each of the pins fired at the
same time.

5 . 5 F l o w C o n t r o l | 251

Figure 5.5.11 – The Sequence Node

WhileLoop Node

Once the WhileLoop Node has been activated, the Loop
Body pin will fire over and over again, as long as the
Boolean value connected to the Condition pin is True.
Before each loop iteration, it will check the value of
Condition, and once the Condition is False it will break the
loop and execution will flow out of the Completed pin. It’s
important to make sure that there is definitely some way
for the Condition to eventually evaluate to False, or you
will end up with an infinite loop.

5 . 5 F l o w C o n t r o l | 252

Figure 5.5.12 – The WhileLoop Node

Switches

Switches are a way to route the flow of execution based on
the value of whatever variable you pass into the Switch.
For example, if you create a Switch on Int Node, you can
connect an Integer variable to the Selection pin, and then
when the Node is activated, it will read in the value of the
Integer and based on that value, route execution to one of
the output pins.

Figure 5.5.13 – The Switch on Int Node

By default, the only output pin is the Default pin. The Add
pin button can be used to create more output pins and will
create them starting with the value of the Node’s Start
Index property, and then incrementing by 1 each time the
button is pressed. If you want to delete one of the pins

5 . 5 F l o w C o n t r o l | 253

you added, you just need to right-click on that pin and click
“Remove execution pin”.

You can also do a Switch on other data types as well. For
example, you could use the Switch on Name Node. This
will work the same way as the Switch on Int Node, with
the exception that you will need to specify the text to
compare against for each of the output pins. You can do
that by going over to the Details Panel, expanding the Pin
Names property, and entering the text you want each pin
to check for.

Figure 5.5.14 – The Switch on Name Node

5 . 6 A c c e s s i n g A c t o r s W i t h i n B l u e p r i n t s | 254

5.6 Accessing Actors Within Blueprints

To really get use out of your Blueprints, you’re going to
want to be able to access the Actors in your Level in order
to be able to read their data, make decisions based on that
data, and to manipulate the Actors in different ways.

In order to get access to an Actor within a Blueprint, that
Actor needs to be selected in the Level Editor when you
right-click in the Event Graph of the Blueprint. When you
do so, the Node Menu will have some options at the top
relating to that Actor. You can create an Event based on
the Actor, you can call a Function on the Actor, and you
can also get a reference to the Actor. Note that for this to
work, the Context Sensitive checkbox needs to be checked.

5 . 6 A c c e s s i n g A c t o r s W i t h i n B l u e p r i n t s | 255

Figure 5.6.1 – You can get a reference to the currently
selected Actor through the Node Menu

Getting a Reference to an Actor

The following example uses a reference to a Light Actor to
turn that light off two seconds after the Level begins:

5 . 6 A c c e s s i n g A c t o r s W i t h i n B l u e p r i n t s | 256

Figure 5.6.2 – This logic will turn a Light Actor off two
seconds after the Level begins

The Set Visibility Node takes in a Light Component as the
“Target” to perform the action on and its New Visibility
Boolean will determine whether the Node will set the
visibility of the target component to True or False. Note
that when connecting the reference to the Light Actor to
the Target pin, the Engine automatically created a Node in-
between. This is because the Set Visibility function
technically sets the visibility of Components, not the
Actors themselves, so the Node is just getting the Light
Component of the Light Actor so that the Light Component
can be passed in as the target component.

Creating an Event From an Actor

To create an Event from an Actor, select the Actor in the
Level Editor, open the Node Menu in the Blueprint, make

5 . 6 A c c e s s i n g A c t o r s W i t h i n B l u e p r i n t s | 257

sure Context Sensitive is checked, then select “Add Event
for [Actor Name].” From there, if you expand the Collision
menu, there will be an option to create an On Actor Begin
Overlap Event. This Event will fire whenever another Actor
overlaps with this Actor. This Event is often used with
Trigger Volumes.

Figure 5.6.3 – Adding an Add On Actor Begin Overlap Node

The following example uses Events to turn a Light on and
off when an Actor enters and exits a Trigger Volume
named “LightTrigger”:

5 . 6 A c c e s s i n g A c t o r s W i t h i n B l u e p r i n t s | 258

Figure 5.6.4 – This logic will turn a light off when an Actor
enters a Trigger Volume and will turn it back on once that
Actor leaves the Trigger Volume

5 . 7 B l u e p r i n t C l a s s e s | 259

5.7 Blueprint Classes

With Blueprint Classes, you can create Blueprints out of
existing Actors and Assets. By creating a Blueprint from an
Actor, you can add data and functionality to that Actor,
essentially creating your own custom version of that Actor
type.

To create a Blueprint from an Actor, select it, and then in
the Details Panel, click on the blue “Blueprint/Add Script”
button. Then select the folder path where you want to
save the Blueprint, give it a name, and click “Create
Blueprint.”

Figure 5.7.1 – The Blueprint/Add Script button

So far in this book, the only Blueprints have been Level
Blueprints, which only have an Event Graph. But for
Blueprints of Actors, there is also a Viewport tab and a
Construction Script tab. The Viewport tab allows you to see
what your Actor looks like and also allows you to add
Components to it. The Construction Script is something
that will be run just before the Actor gets created, so it’s
useful for performing any initialization you might need to
do on the Actor to get it ready for gameplay.

5 . 7 B l u e p r i n t C l a s s e s | 260

Blueprint Class Example

The following example is a Blueprint that has been created
from a Point Light Actor. The logic will cause the Light to
turn on and off every second:

Figure 5.7.2 – This logic will cause a Light Actor to turn on
and off every second

The Toggle Visibility function is like the Set Visibility
function, except instead of using it to specifically set a
visibility property to True or False, it will simply toggle the
property to the opposite of whatever it’s currently set to.
So if the visibility was True, the function would set it to
False, and vice-versa.

Because this is the Blueprint for the Point Light, the Editor
assumed that the Light is the desired target and
automatically connected the Light Component of the Light
to the Target pin when the Toggle Visibility Node was
created.

5 . 7 B l u e p r i n t C l a s s e s | 261

When the game loads and the Actor is first created in
memory, its Event BeginPlay Node will fire. Then the Delay
Node will delay flow for one second before the Toggle
Visibility Node is activated. The output execution pin of
the Toggle Visibility Node has been connected to the input
execution pin of the Delay Node. This creates a loop that
will cause the Light to turn on and off every second for the
duration of the Actor’s existence.

Instances

One of the major advantages of Blueprint Classes is that
they are reusable. The above Blueprint of a custom Light
Actor can be used just like any other Actor. If you browse
to it in the Content Browser, you can drag and drop as
many instances of it as you want. An instance is an
individual copy of an object made from a Blueprint.

Editable Variables

When you add a variable to a Blueprint Class, it is, in
essence, adding a custom property to that Actor. The
following builds upon the earlier example and adds a Float
variable named Light Toggle Duration to the Blueprint and
uses that variable as the Duration of the Delay Node:

5 . 7 B l u e p r i n t C l a s s e s | 262

Figure 5.7.3 – A Float variable named Light Toggle
Duration has been added to this example

Right now, this isn’t doing anything different than it was
doing before, but that can be changed by making this
variable Editable.

There are two ways to make a variable Editable. One way
is to use the icon in the My Blueprint tab, which will toggle
between the image of an eye open and an image of an eye
closed. When the eye is open, that means that the variable
is Editable. You can also use the Editable checkbox in the
Details Panel to set whether the variable should be
Editable or not.

If a variable is set to Editable, its value can be changed in
the Level Editor. With the Light Toggle Duration variable
set to Editable, if you select an instance of the Light
Blueprint in the Level Editor, that variable will now appear
in the Details Panel.

5 . 7 B l u e p r i n t C l a s s e s | 263

Figure 5.7.4 – The variable named Light Toggle Duration
now appears in the Details Panel when an instance of the
Light Blueprint is selected in the Level

Now you have the ability to easily set a different duration
for each instance of the Actor. You could drag in several
instances of the Actor, give them each a different Light
Toggle Duration, and they will all turn on and off at
different rates. This is the power of Blueprint Classes. You
can create your own custom Actors and Assets, reuse
them as many times as you like, and modify their
individual properties.

5 . 8 T i m e l i n e s | 264

5.8 Timelines

Timelines are used to create simple animations, such as
changing the location, rotation, or color of an object. To
add a new Timeline Node, right-click in the graph, select
“Add Timeline...” from the bottom of the menu, and give
the Timeline a name. To edit a Timeline, double-click it to
open it in the Timeline Editor.

5 . 8 T i m e l i n e s | 265

Figure 5.8.1 – A new Timeline Node can be added from the
Node Menu

Tracks and Keys

To add a new track to a Timeline, use one of the buttons in
the upper-left corner of the Timeline Editor. A track is used
to specify what value or values the Timeline should be
outputting at any given point in time. For example, the
first button with the “f” on it is used to add a Float track
which is used to output single Float values.

Figure 5.8.2 – These buttons are used to add new tracks to
a Timeline. The first button creates a Float track.

A track is represented by a graph. The time, in seconds,
from the start of the Timeline, is represented horizontally.
The value that gets outputted is represented vertically. To
specify what value should be outputted at what time, you
need to add a key to that point on the track’s graph. To
add a key, hold down Shift on the keyboard and left-click
in the graph.

5 . 8 T i m e l i n e s | 266

To change the placement of a key, either left-click on it
and drag it to where you want, or use the boxes at the top
of the graph to enter the X and Y values manually. To
move around the graph, right-click and drag the mouse. To
zoom in-and-out, use the scroll wheel of the mouse, just
like in a Blueprint graph.

Figure 5.8.3 – The orange diamond in this figure is called a
key

Timeline Example

The following is an example of a Timeline that is used to
animate a Light Actor, so that its light starts out
completely dark, gradually gets brighter, and then
gradually gets dimmer again. The Timeline consists of a

5 . 8 T i m e l i n e s | 267

single Float track that will be used to feed values into the
Light’s Intensity property:

Figure 5.8.4 – The red line in a Timeline is called a curve

The red line is called a curve, and represents what value
the Timeline Node will output at any given time during the
animation. In this case, at the start of the animation, the
Timeline Node will output zero, then it will gradually
output a higher and higher value, until at 2.5 seconds, it is
outputting a value of 100,000. Then, for the next 2.5
seconds, the value gradually decreases, until it reaches
zero again.

This value will get outputted from an output pin on the
Timeline Node. For each track you create, it will create a
new output pin on the Timeline Node that will have the
same name as the track and will output the value for that
track. In this example, the output of the track is connected

5 . 8 T i m e l i n e s | 268

to a pin that will set the Intensity property of the Light
Component of a Light Actor:

Figure 5.8.5 – Due to the curve of the track created for this
Timeline, this logic will cause a light to gradually get
brighter, then gradually get dimmer again

When the Play execution pin is activated, it will cause the
Timeline to start playing. For the next 5 seconds (the
length of the Timeline), for each tick of gameplay, the
Update pin will fire, causing the Set Intensity Node to fire.
Each time the Set Intensity Node fires, it will receive a
different value from the track based on that track’s curve
and the current playback point of the Timeline.

That’s the basics of how Timelines work. You create a
curve on a track to output different values across time,
and then use those values to update some property during
each tick of gameplay.

5 . 8 T i m e l i n e s | 269

Other Types of Tracks

The above example used a Float track, but there are other
types of tracks as well. If you wanted to create a track to
change a Vector value, such as an object’s location, you
would use the button to the right of the Float track button
to create a Vector track. By gradually changing an object’s
location over time, you can create a simple movement
animation.

To the right of that, is a button that is used to create an
Event track, which can be used to specify at what points in
time certain Events should fire. To the right of that, is a
button used to create a Color track which can be used to
gradually turn one color into another color.

Add an Existing Curve to a Track

The button to the right of the Color track button can be
used to add an already existing curve to a new track. If you
select a curve Asset in the Content Browser and then click
the button, it will create a new track and add that curve to
it.

To add an existing curve to the current track, select the
curve in the Content Browser, then click the arrow
beneath the text “External Curve” to the left of the track
you want the curve added to.

5 . 8 T i m e l i n e s | 270

Figure 5.8.6 – Existing curves can be added to a track

To save a curve you create so it can be used again later in
the above manner, right-click in the graph and select
“Create External Curve” to save the curve as an Asset in
the Content Browser.

Timeline Options

To the right of the create track buttons, there are a few
options you can set for your Timeline. The first box allows
you to set the length of the Timeline. To the right of that is
the Use Last Keyframe? option. If this is unchecked, the
very last tick of the animation will be ignored. This is useful
when looping, to prevent skipping in the animation when
the loop starts over.

Figure 5.8.7 – Timeline Options

5 . 8 T i m e l i n e s | 271

If the AutoPlay option is checked, the Timeline will begin
playing as soon as the Level (or Actor) is created, even if
it’s not connected to an Event BeginPlay Node. With the
Loop option checked, the animation will start over from
the beginning once it reaches the end. The Replicated
option will cause the animation to be replicated across all
clients during a multiplayer game.

Timeline Node Pins

When the Play pin fires, the Timeline will start playing
from its current position. So let’s say the Timeline starts at
zero, and the Play pin fires, and then two seconds into the
animation the Stop pin gets executed. At that point, the
animation will pause at the two-second mark. If the Play
From Start pin was executed, the animation would go back
to the zero-second mark and play from there. But if the
Play pin was executed at that point, the animation would
continue playing from the two-second mark.

5 . 8 T i m e l i n e s | 272

Figure 5.8.8 – The pins of the Timeline Node

The Reverse pin will cause the animation to start playing in
Reverse from its current position, and the Reverse from
End pin will move the animation to the end and then start
playing in Reverse from there. The Set New Time pin will
move the animation to whatever time is specified in the
New Time pin.

The Finished pin fires when the animation is complete. The
Direction pin will contain a value of either Forward or
Reverse, based on which direction the Timeline is playing
at that particular moment.

5 . 9 C h a p t e r 5 Q u i z | 273

5.9 Chapter 5 Quiz

1. What is the area of a Blueprint where you script the
logic called?

2. What Node, inside of a Level Blueprint, will be
activated by the Level first starting?

3. What Node is activated before every frame of
gameplay?

4. What is it called when the Engine converts the logic
of a Blueprint into machine code that the computer
can understand?

5. What values can a variable of type Boolean hold?

6. After creating a new variable, what do you need to do
before you can set a default value for the variable?

7. What does it mean when a variable’s Private property
is set to True?

8. What is the index number of the third element of an
array?

9. What are four advantages to using functions?

5 . 9 C h a p t e r 5 Q u i z | 274

10. What type of Node takes in a Boolean value as its

input and then continues execution either through a
True output execution pin or a False output execution
pin?

11. How do you access an Actor within the Level
Blueprint?

12. How do you create a Blueprint out of an existing
Actor?

13. What kind of Node can be used to produce simple

animations, by outputting a stream of values over

time?

5 . 9 C h a p t e r 5 Q u i z | 275

Answers

1. Event Graph

2. Event BeginPlay Node

3. Event Tick Node

4. compiling

5. True or False

6. compile the Blueprint

7. It means that only the Blueprint that the variable
belongs to is allowed to access the variable.

8. 2

9. reusability, editability, reliability, readability

10. Branch Node

11. Select the Actor in the Level Editor, then open the
Node Menu in the Blueprint Editor and select “Get
reference to [Actor]” near the top of the menu.

12. Select the Actor, then in the Details Panel, click on
the blue “Blueprint/Add Script” button.

5 . 9 C h a p t e r 5 Q u i z | 276

13. Timeline Node

C h a p t e r 6 – P l a y e r s & I n p u t | 277

6
Players & Input

6 . 1 G a m e M o d e s | 278

6.1 Game Modes

A Game Mode is an Actor that can be used to define and
enforce the game’s set of rules. These rules may include
how many lives the player starts with, whether or not the
game can be paused, if there are any time limits, the
conditions needed to win the game, and so on. The Game
Mode can be set on a per-level basis and you can use the
same Game Mode for multiple Levels. In fact, the primary
purpose of a Game Mode is to store data and logic that
applies to more than one Level and thus isn’t appropriate
for a Level Blueprint.

To use the Game Mode Actor, you will want to create a
Blueprint Class from it. Just like with any other Blueprint,
you can create variables to store data, and Nodes to add
functionality. For example, you could create an Integer
variable called “Start Time” that specifies the amount of
seconds that the game timer should start with, and you
could use the Event Graph to define how a player wins the
game and what should happen when they do.

Create a New Game Mode Blueprint

To create a new Blueprint Class from the Game Mode
Actor, go to the Content Browser and browse to the folder
you want to put the Blueprint in. Then click the green Add
New button and select Blueprint Class.

6 . 1 G a m e M o d e s | 279

Figure 6.1.1 – Creating a new Blueprint Class

This will open a window where you can choose the parent
class you want to derive the new Blueprint from. At the
top, there is a list of commonly selected parent classes,
and below that is a searchable list of all the classes that
can be used. In the list of common classes, click on the

6 . 1 G a m e M o d e s | 280

Game Mode button. To edit the Blueprint, simply double-
click on it to open it in the Blueprint Editor.

Figure 6.1.2 – Selecting a parent class for the Blueprint
Class

Game Mode Properties

The Game Mode class comes with some default properties
that can be edited in the Details Panel of the Blueprint
Editor.

6 . 1 G a m e M o d e s | 281

Figure 6.1.3 – Game Mode properties

The first property is Use Seamless Travel. This has to do
with how players transition between Levels in multiplayer
games. With this unchecked, players will disconnect from
the server while a new Level loads, and then reconnect to
the server once the Level has loaded. With Seamless
Travel enabled, the new Level will load in the background
and there is no disruption in the server connection. For
multiplayer games in Unreal Engine, using Seamless Travel
is recommended.

The next property, Pauseable, simply determines whether
or not the game is allowed to be paused.

The next property is Start Players as Spectators. With this
unchecked, players will spawn into the game as soon as
they connect to the server. With this checked, players who
connect to the server will start as Spectators and must
spawn into the game manually.

6 . 1 G a m e M o d e s | 282

The next property is Delayed Start. With this unchecked,
the game will begin as soon as the first player connects to
the server. With this checked, you must manually script
the condition that would cause the game to start.

The property Minimum Respawn Delay specifies the
minimum amount of time, in seconds, a player must wait
to respawn after dying.

Default Player Name will assign a default name to any
players who connect to the server with no name specified.

Inactive Player State Life Span specifies the amount of
time, in seconds, that a player’s data will be kept on the
server after they log out. This gives players who disconnect
a window where they can still reconnect without being
kicked from the game.

Start With Tick Enabled determines if the game will start
with the Tick Function enabled, which is something that
will fire the Event Tick Node at a specified interval. With
the Tick Interval at zero, which is the default, the tick will
occur before each frame of gameplay. If an interval is
specified, each tick will occur that many seconds from
each other. So if a value of 5 is entered, the Event Tick
node will fire every five seconds instead of before every
frame.

6 . 1 G a m e M o d e s | 283

The properties under the Classes category define various
gameplay classes that your game will use. For example,
the Default Pawn Class specifies the Actor that the Player
will start off controlling in the game. The HUD Class
defines what kinds of text overlays you will have during
gameplay such as health, lives, score, timer, etc.

Figure 6.1.4 – You can set game defaults in the Game
Mode

There are already defaults for each of the classes. But if
you wanted to change, for example, the HUD that a Game
Mode used, you could create a new HUD Blueprint Class,
and once you saved it, you would be able to select it from
the dropdown, telling the Game Mode to use that HUD
and not the default.

6 . 1 G a m e M o d e s | 284

Assigning Game Modes

After you create a Game Mode Blueprint, you still need to
tell the Engine you want to use it. One option you have is
to assign it as the default Game Mode for the game that all
the Levels will use by default, unless otherwise specified.

To set the default Game Mode, go up to the Menu Bar,
click on Edit, and then Project Settings. Then select Maps
& Modes from the list on the left. On the screen that
comes up, there will be a Default GameMode property
that you can set.

Figure 6.1.5 – You set the Game Mode to use in the Maps
& Modes tab of Project Settings

6 . 1 G a m e M o d e s | 285

You can also choose to override the default Game Mode
on a per-level basis. First, with the Level open that you
want to use a different Game Mode for, go up to the
Toolbar and click on Settings, and then World Settings.
This will open the World Settings tab within the Details
Panel. On this tab, there is a property called GameMode
Override. By default, this is None, which means the Level
will use the Default GameMode. But you can choose to
override the default by assigning another GameMode
using the dropdown.

Figure 6.1.6 – Opening the World Settings tab

6 . 1 G a m e M o d e s | 286

Figure 6.1.7 – A GameMode Override can be set in the
World Settings tab of the Details Panel

6 . 2 P a w n s | 287

6.2 Pawns

A Pawn is an Actor that can be controlled, either by a
human player or the computer. Pawns are used for the
Actor that you play as in the game and also for AI-
controlled allies and enemies.

As you saw in the previous section on Game Modes, the
default Game Mode starts with a default Pawn Actor.
You’ve probably already used this Pawn to fly around your
practice Levels, even though you can’t see it because 1.) it
doesn’t have a static mesh defined and 2.) the camera is
attached to it in a first-person perspective.

You can, however, create your own Pawn Actors, by
creating a new Blueprint Class out of the existing Pawn
class. Then you would assign the new Pawn as the Default
Pawn Class in the Game Mode. To create a new Pawn
class, first go to the Content Browser and navigate to the
folder you want the Blueprint to be created in. Then click
Add New, hover over Blueprints, and select Blueprint
Class. Then select the Pawn class as the Parent Class for
the Blueprint. To edit the Blueprint, double-click on it to
open it in the Blueprint Editor.

In the Viewport tab of the Blueprint Editor, you will see
that the Actor starts out consisting of just a single
component, the DefaultSceneRoot component. This is an
advanced topic, so don’t worry about what the

6 . 2 P a w n s | 288

DefaultSceneRoot is, just know that every Pawn will have
one.

Adding a Static Mesh Component to a Pawn

The first thing you may want to consider adding to your
Pawn is a Static Mesh Component, so that the Pawn
actually looks like something and isn’t invisible. To do so,
simply click Add Component and select Static Mesh.

Figure 6.2.1 – Adding a Static Mesh Component to an Actor

This will add a Static Mesh Component, but you will still
need to define which Static Mesh the component should

6 . 2 P a w n s | 289

use. To do that, go to the Static Mesh category of the
Details Panel and select one using the dropdown.

Adding a Camera Component to a Pawn

If you are using a Pawn for a human player, you will want
to add a Camera Component to it, in order to define the
perspective that the player will see from. To do so, click
Add Component, go down to the Camera category, and
select Camera.

Wherever you place the lens of the Camera icon is where
the player will see out of. So if you wanted a first-person
perspective, you would place the Camera so that the lens
was located at the same place as where the Mesh’s eyes
are supposed to be. Or you could position the Camera
elsewhere and have it pointing at the Mesh in order to
give it a third-person perspective.

6 . 2 P a w n s | 290

Figure 6.2.2 – This Pawn has a chair for its Mesh. If the
chair had eyes in its front, this Camera placement would
give a first-person perspective.

Adding a Spring Arm Component to a Pawn

When you are setting up a third-person perspective, you
will also want to use a Spring Arm Component. The Spring
Arm Component will allow the Camera to automatically
make adjustments in cases where the line of sight
between the Camera and the mesh gets obscured. The
Spring Arm Component can also be found under the
Camera category.

6 . 2 P a w n s | 291

You will need to attach the Camera to the Spring Arm in
order for it to be of use. To do that, select the Camera
Component in the Components window, and drag it onto
the Spring Arm Component. Once the Camera is attached,
you can’t use the Move Tool to move it around. At that
point, if you want to adjust how far away the Camera is
positioned, you will need to set the Target Arm Length
property of the Spring Arm, which sets the default length
of the Spring Arm.

Figure 6.2.3 – Properties of the Spring Arm Component

The Camera will normally be the default length away from
the Mesh, but that could change if the Spring Arm needs
to adjust because the view of the Camera gets blocked. For
example, if a wall gets between the Camera and the Mesh,
the Spring Arm will automatically shorten in order to bring
the Camera in close enough to be able to see the Mesh
again. Then, when the wall was no longer an issue, the
Spring Arm would lengthen back to the Target Arm Length.

6 . 3 C h a r a c t e r s | 292

6.3 Characters

A Character is a type of Pawn that has all the features and
functionality of a Pawn, plus additional ones. Specifically, a
Character is a type of Pawn that is meant to have bipedal
movement. Bipedal refers to walking on two legs, so you
would use the Character class to represent humans and
other creatures with human-like movement, like walking
and jumping.

You can create your own Character class the same way as
the Game Mode and Pawn class. Go to the Content
Browser, go to Add New, select Blueprint Class, and select
Character as the Parent Class. As always, double-click it to
open it in the Blueprint Editor.

Don’t forget to assign your new Character as the Default
Pawn Class in the Game Mode. Remember that a
Character is a type of Pawn. The Character class is a child
of the Pawn class. So the Default Pawn Class can be set to
a Pawn class or any child of a Pawn class.

Character Components

The Character class comes with a few different
Components. The Capsule Component is used as the
boundaries of the Character for the purposes of detecting
collisions.

6 . 3 C h a r a c t e r s | 293

Figure 6.3.1 – The default Components of a Character

The Arrow Component is used to indicate which direction
should be considered facing-forward for the Character. So
if you had a Mesh of a human, you would want the arrow
to be coming straight out of the front of its body.

The Skeletal Mesh Component can be used to assign a
Skeletal Mesh to the Character.

Character Movement Component

Perhaps the most important component of the Character
is the Character Movement Component. This is what gives
the Character its movement capabilities. If you click on it,
you can edit several properties relating to its movement.

6 . 3 C h a r a c t e r s | 294

Figure 6.3.2 – Character Movement properties

6 . 3 C h a r a c t e r s | 295

The Gravity Scale property determines how much of an
effect gravity will have on this Character. Max Acceleration
determines the maximum acceleration that this Character
can achieve for any type of movement, whether it be
walking, swimming, etc. Braking Friction Factor
determines how much the Character will glide when
attempting to slow down its speed.

The Mass property will set the mass of the Character
which determines things like how much force is required
to move it, and so on. Max Step Height determines how
tall a step has to be before the Character can no longer
automatically ascend it when walking. Walkable Floor
Angle determines how steep a sloped floor can be before a
Character can no longer walk up it.

You can set the Character’s maximum walk speed and the
max walk speed when the Character is crouched. You can
set whether a Character will walk off a ledge when they
reach the end of it or if that will block the Character’s
movement.

There are several properties relating to jumping and
falling, such as the Jump Z Velocity which will determine
how high your Character can jump, and the Air Control
property which determines how much control you have
over your Character when it is in the air. There are also
some properties for swimming, flying, and so on.

6 . 3 C h a r a c t e r s | 296

Creating a Jump Input

The Jump function, as its name implies, will cause your
Character to jump. The Jump function is one of many
movement functions available to the Character class that
is not available to the regular Pawn class.

Adding the following to the Event Graph of the Character
Blueprint will cause the Character to jump when the Space
Bar is pressed:

Figure 6.3.3 – Pressing the Space Bar will cause the
Character to jump

6 . 4 C o n t r o l l e r s | 297

6.4 Controllers

A Controller is an Actor that is used to possess a Pawn and
control its movement and actions. There are two types of
Controllers - the Player Controller, which is used to take
input from a human and use that to control a Pawn, and
the AI Controller, which is used to implement AI control
over a Pawn.

You can create a Player Controller Blueprint by creating a
new Blueprint Class and using Player Controller as the
Parent Class. To use it, you will need to set it as the Player
Controller Class in the Game Mode Blueprint.

Figure 6.4.1 – Setting the Player Controller Class in the
Game Mode

Advantages of Using a Controller

As you learned in the last section, you can define the input
for a Pawn directly in its own Blueprint. But imagine if your

6 . 4 C o n t r o l l e r s | 298

game consisted of dozens or even hundreds of characters
that the player could control and they all shared many of
the same movements. For example, think of the Lego
games, like Lego Star Wars, which have dozens of
characters you can switch between.

If you were defining the input inside the Pawn, you would
have to define it over and over again for each and every
Pawn. Then, if you wanted to make even a small change,
you would have to make that same change over and over
again.

By defining your input inside of a Player Controller instead,
you only need to define it in one place, and if you ever
need to make a change, you only need to make the change
in one place. Then you would be able to use that input on
any Pawn that the Player Controller possesses.

Adding Input to a Player Controller

If you tried to add jump functionality, like was done in the
previous section, to a Player Controller Blueprint
immediately, you won’t be able to because the Jump
function belongs to the Character class. The Jump Node
won’t even be available as a selection in the Node Menu.

You would first need to get access to the Character so that
you can access its Jump function. This can be done with a

6 . 4 C o n t r o l l e r s | 299

Get Player Character function. This function will return the
Character that the specified player is using. Player index 0
is for player 1 and player index 1 is for player 2 and so on.
If the Pawn that the player is using is a Character, the
Return Value will contain that Character, otherwise it will
return a Null value.

If the Return Value pin contains a valid Character, when
you drag off the pin and access the Node Menu, the Jump
Node will be available because you are in the context of a
Character. The following shows an example of adding jump
functionality to a Player Controller:

Figure 6.4.2 – The Jump function is only available to the
Character class

This provides the same functionality as in the previous
example, but now that functionality has been abstracted

6 . 4 C o n t r o l l e r s | 300

out to a higher level which will allow you to easily use it
with any Character you wish.

6 . 5 I n p u t M a p p i n g | 301

6.5 Input Mapping

Imagine you were creating a multiplayer game that could
support eight players. You would need eight different
Player Controllers - one for each human player that is
playing the game. If each Player Controller contained the
Jump functionality from the previous section, and you
wanted to change what key caused the player to jump
from the Space Bar to some other key, you would need to
make that change eight times.

But with Input Mapping, you can define what key or keys
correspond to what behavior by mapping the keys to a
name that you create. Then, you can refer to that name in
Player Controller Blueprints instead of hardcoding the
specific key to use. If you ever want to change which key
corresponds to which action, you will only need to make
that change in one place.

Action Mappings vs Axis Mappings

In the Level Editor, go to Edit > Project Settings. Under the
Engine category, click on Input. This will bring up the
screen where you can create Input Mappings. These are
divided into two categories - Action Mappings and Axis
Mappings.

6 . 5 I n p u t M a p p i n g | 302

Figure 6.5.1 – You can map inputs in the Engine category
of the Project Settings

Action Mappings are for key presses and releases where
holding down the key for any length of time doesn’t make
a difference. For example, if you wanted your character to
throw a punch and you wanted the player to have to press
a button for each punch, you would use an Action
Mapping.

Axis Mappings are used in situations where holding down
the key provides a continuous stream of input. For
example, you would often use this for walking, where if
you hold the key continuously, the character will continue
to walk until you let go.

6 . 5 I n p u t M a p p i n g | 303

Creating New Input Mappings

To create a new mapping, under the Bindings category,
click on the plus sign next to the type of mapping you want
to create. If you don’t see the new mapping right away,
click on the triangle to the left of the label to expand the
section.

Figure 6.5.2 – Creating a new input mapping

The first box is used to give the mapping a name.
Underneath that box is a row where you define a key or
button to use that will trigger the action. There are also a
series of checkboxes you can check to require that
additional keys be held at the same time as the one
defined, such as Shift, Ctrl, or Alt.

If you want another key or button to also trigger the same
action, just click the plus sign next to the name of the
mapping to define another input.

6 . 5 I n p u t M a p p i n g | 304

You don’t need to save your changes here because any
changes made in the Project Settings are automatically
saved as they are made. When you are done you can
simply close the Project Settings window.

Once you create a mapping, it will be available in the Node
Menu and you can use it in place of the keyboard Nodes
used in the previous examples:

Figure 6.5.3 – Using a mapped action instead of
hardcoding the key to use

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 305

6.6 Setting Up Basic Character Movement

This section will go through the entire process of setting
up basic Character movement. In addition to the jump
functionality already covered, you will learn how to move
your Character around using the W, A, S, D keys, or the
left-analog stick of a gamepad, and how to make your
Character look around using the mouse or the right-analog
stick.

Setting Up the Input Mapping

Go to Edit > Project Settings > Input. Setup an Action
Mapping named “JumpAction” like was done in the
previous section:

Figure 6.6.1 – Mapping inputs for a jump action

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 306

Movement requires detecting a continuous input, so the
movement behaviors will use Axis Mappings. Add an Axis
Mapping and name it “LookUpDown.” To look up and
down, we want our player to be able to use either the
mouse, by dragging it up or down, or by using the right
thumbstick of a gamepad, by tilting it up or down. So click
the plus sign to the right of the mapping twice, and select
“Mouse Y” for the first input and “Gamepad Right
Thumbstick Y-Axis” for the second input.

Figure 6.6.2 – Adding mappings for having the Character
look around

To the right of the mappings, you will see a Scale property.
This will determine both the magnitude and direction of

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 307

the axis input. So if you set the scale of the mouse to 2.0
but left the gamepad at 1.0, then the mouse would cause
the player to look up and down twice as fast as using the
gamepad.

If you make the Scale negative, it will reverse the direction
of the movement applied. With the gamepad scale set at
1.0, tilting the stick up will cause the player to look up and
tilting the stick down will cause the player to look down. If
it was set to -1.0, it would invert those controls. The
mouse Y-axis is inverted by default, so you will need to set
that to negative if you want to make it standard.

Continue to add Axis Mappings for the remaining
movements until your mappings look like this:

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 308

Figure 6.6.3 – Complete input mapping for a Character

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 309

Using Input Mappings in Blueprints

Now that you have the input mappings setup, you will
need to edit your Player Controller Blueprint so you can
specify the behaviors that these mapping names actually
correspond to. Before you do that, it will help to place
your Character into a variable that you can access it from,
so that you don’t need to keep calling the Get Player
Character function over and over.

So in the Event Graph of the Player Controller Blueprint,
add a Get Player Character Node. Drag off the Return
Value pin and select Promote to variable from the top of
the menu. This will create a variable and store the
Character in it. In the My Blueprint tab, rename the
variable from “NewVar_0” to “MyCharacter.”

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 310

Figure 6.6.4 – Selecting Promote to Variable will create a
variable of the same data type as the pin

Connect the output execution pin of the Event BeginPlay
Node to the input execution pin of the Set Node. Now, as
soon as the Player Controller is created, it will get a
reference to the Character and store it in a variable which
you can easily access.

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 311

Figure 6.6.5 – This will get a reference to the Character and
store it in a variable as soon as the Level begins

Go back to the My Blueprint tab, drag the MyCharacter
variable into the Event Graph, and create a Get Node. Drag
off the pin of the Get Node and add a Jump Node. Open
the Node Menu and search for the “JumpAction” mapping
that you created earlier. Add that Node and connect its
Pressed pin to the input execution pin of the Jump Node.

Figure 6.6.6 – The jump logic

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 312

Setting Up the Look Movements

In the Node Menu, search for the “LookUpDown” mapping
and add that Node. Drag another wire off the MyCharacter
node, so you can access the Character’s functions, and
search for a function called Add Controller Pitch Input. The
word “pitch” in this context refers to the kind of up and
down rotational movement that we’re looking to produce.

Connect the output execution pin of the InputAxis
LookUpDown Node to the input execution pin of the Add
Controller Pitch Input Node. Then take the Axis Value pin
of the InputAxis LookUpDown Node, which contains the
Scale value you specified in the Input Mappings, and
connect it to the Val pin of the Add Controller Pitch Input
Node.

Now add the Node for the LookRightLeft mapping you
created and connect that to a function called Add
Controller Yaw Input which is used to control left and right
rotational movement. Remember that you need to drag
out of the My Character Get Node in order to access
Character functions.

Your Event Graph should now look similar to this:

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 313

Figure 6.6.7 – The logic for the look movement

There’s one more thing you will need to do to get this look
functionality working with these functions. Compile and
save the Blueprint, and then open your Character
Blueprint. In the Details Panel, under the Pawn category,
make sure that the two properties Use Controller Rotation
Pitch and Use Controller Rotation Yaw are both checked.

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 314

Figure 6.6.8 – Make sure the first two properties here are
checked

Setting Up the Walking Movements

Reopen the Player Controller Blueprint. Create another
copy of the My Character Get Node to prevent the Event
Graph from getting too messy. Add the Node for the
MoveForwardBackward mapping and connect that to a
function called Add Movement Input. Connect the Axis
Value pin to the Scale Value pin.

For this to work, you need to provide the Add Movement
Input Node with additional information. You need to tell it
which direction to move the Character relative to the
world. You already know what direction you want to move
relative to the character - forward or backward - but which
direction is that as far as the Level is concerned? That
depends on the direction that the character is facing. So

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 315

you will need to get the Vector that represents that
direction and hook it into the World Direction pin.

So drag off the My Character Get Node again, and add the
function Get Control Rotation. This will tell you how the
Character is rotated relative to all three axes. But all you
care about at this point is which direction the character is
facing. So to get that information, drag off the Return
Value pin and add the Get Forward Vector function.

This will extract the forward Vector from out of the
Rotation value. Now connect the Return Value pin of the
Get Forward Vector Node to the World Direction pin of the
Add Movement Input Node.

The setup for left and right movement is the same, except
you need to use the Get Right Vector function instead of
the Get Forward Vector function. When you are finished,
the logic for the walking movements should look
something like this:

6 . 6 S e t t i n g U p B a s i c C h a r a c t e r M o v e m e n t | 316

Figure 6.6.9 – The logic for the walking movement

6 . 7 C h a p t e r 6 Q u i z | 317

6.7 Chapter 6 Quiz

1. What type of Blueprint Class would you use to store
data and logic that applies to multiple Levels?

2. What type of Component, when attached to a
camera, will allow the camera to automatically make
adjustments in cases where the line of sight between
the camera and the mesh gets obscured?

3. What is the parent class of the Character class?

4. Why would you want to define your inputs inside of a
Player Controller?

5. What is the difference between Action Mappings and

Axis Mappings?

6 . 7 C h a p t e r 6 Q u i z | 318

Answers

1. Game Mode

2. Spring Arm Component

3. Pawn

4. Once the input has been defined in a Player
Controller, it can easily be applied to any Pawn you
want, instead of having to define it over and over in
each Pawn. Also, changes only need to be made in
one place.

5. Action Mappings are for discrete inputs while Axis
Mappings are for continuous inputs.

C h a p t e r 7 - C o l l i s i o n s | 319

7
Collisions

7 . 1 C o l l i s i o n s O v e r v i e w | 320

7.1 Collisions Overview

In the Details Panel, under the Collision category, you can
edit the Collision properties of an Actor.

Hit Events & Overlap Events

If two Actors are set to block one another when they come
into contact, then, when they collide, this will generate a
Hit Event if Hit Events are enabled for that Actor.

To enable Hit Events for an Actor, check the Simulation
Generates Hit Events checkbox under the Collision
category. For an Actor’s Hit Event to fire, only the
Simulation Generates Hit Events checkbox for that Actor
needs to be checked. The other Actor’s checkbox only
needs to be checked if you want that Actor’s Hit Event to
fire as well.

Figure 7.1.1 – To enable Hit Events for an Actor, check the
Simulation Generates Hit Events checkbox

7 . 1 C o l l i s i o n s O v e r v i e w | 321

On the other hand, if two Actors are set to overlap with
one another, then, when they overlap, this will generate
an Overlap Event if Overlap Events are enabled for both of
the Actors.

To enable Overlap Events for an Actor, check the Generate
Overlap Events checkbox under the Collision category.
Again, for an Actor’s Overlap Event to fire, both the Actors
involved in the collision must have Generate Overlap
Events checked.

Hit Events and Overlap Events can be used like any other
Event Node and thus can be used to define what should
happen when a collision occurs.

Collision Presets

When you expand the menu under the Collision Presets
property, you will find a long list of collision properties
that can be automatically set by choosing from a list of
presets. Or they can be individually set by choosing
“Custom” and setting them one-by-one.

Collision Enabled Property

The Collision Enabled property is another way to set the
block and/or overlap behaviors of the Actor. This has four
possible settings. When this is set to Collision Enabled, it

7 . 1 C o l l i s i o n s O v e r v i e w | 322

means that the Actor is enabled for both Query Collisions
and Physics Collisions. Query Collisions just refer to overlap
collisions and Physics Collisions refer to blocking collisions.

Figure 7.1.2 – The Collision Enabled property

With Collision Enabled set to Physics Only, the Actor will
be able to block other Actors, and fire Hit Events, but it
won’t be able to fire Overlap Events. If it is set to Query
Only, the Actor will be able to fire Overlap Events but
won’t be able to block other Actors and won’t be able to
fire Hit Events. If it is set to No Collision, the Actor won’t be
able to block other Actors and won’t be able to fire
Overlap Events or Hit Events.

Object Type Property

If the Actor is a Pawn or a Pawn sub-type, such as a
Character, you would set the Object Type to Pawn. If the
Actor is a Vehicle, you would set the Object Type to
Vehicle. If the Actor is a Destructible Mesh, a topic that
hasn’t been covered, you would set it to Destructible.

7 . 1 C o l l i s i o n s O v e r v i e w | 323

Figure 7.1.3 – The Object Type property and Collision
Responses

For all other Actors, if the Actor doesn’t move, you would
set the Object Type to WorldStatic. If the Actor does move,
you would set it to either WorldDynamic or PhysicsBody.
You would use WorldDynamic for Actors that move due to
an animation or a Blueprint script and PhysicsBody for
Actors that will move due to physics, such as gravity or the
force of another object.

The Object Type doesn’t do anything itself inherently. Its
purpose is simply to be able to place each Actor into a
specific group, so that you can use the section below it to
specify how the different types should interact with each
other when they collide.

7 . 1 C o l l i s i o n s O v e r v i e w | 324

This section has a row for each of the six Object Types.
Each row is used to specify the behavior that should occur
when the Actor collides with the Object Type of that row.
You can set each row to either Ignore, Overlap, or Block.
The first row of checkboxes, labeled Collision Responses,
can be used as a “select all” for each column. For example,
if you click on the Overlap checkbox, it will check the
Overlap box in every row.

So if you wanted blocking and Hit Events to occur when
the Actor collides with an Actor of the type WorldDynamic,
you would check the Block column of the WorldDynamic
row. If you wanted the two Actors to overlap and to
generate Overlap Events, you would check the box in the
Overlap column instead. If you wanted the two Actors to
overlap, but not generate any Overlap Events, you would
check the Ignore checkbox.

Note that the behavior that will actually occur depends on
the above settings for both the Actors involved in the
collision. For example, both Actors must be set to block
the other’s type in order for blocking to actually occur and
for Hit Events to fire. Similarly, if one of the Actors is set to
Ignore the other, then Overlap Events won’t fire even if
the other Actor is set to Overlap.

7 . 1 C o l l i s i o n s O v e r v i e w | 325

Trace Responses

The Trace Responses section is used to determine the
Actor’s visibility to other Actors. If the Actor doing the
looking is a camera, you would use the Camera row, and
for all other Actor types, you would use the Visibility row.

If the Actor is set to Ignore, it will be invisible to other
Actors. If it is set to Overlap, it can be seen by other
Actors, but it can also be seen through. So you would use
this for a glass wall, for example. If it is set to Block, then it
can be seen, but it cannot be seen through. So you might
use this for a brick wall, for example.

Collision Preset Property

Again, if you want to be able to set the above properties
manually, you need to set the Collision Preset to Custom.
But you can also use the dropdown to select from a long
list of presets. Each preset will automatically select some
combination of the properties.

For example, with BlockAll as the preset, it will
automatically set the Collision Enabled property to
Collision Enabled, it will set the Object Type to
WorldStatic, and it will set all of the responses to Block. If
OverlapAll is selected, it will set Collision Enabled to Query
Only, it will set the Object Type to WorldStatic, and it will
set all of the responses to Overlap. If OverlapAllDynamic is

7 . 1 C o l l i s i o n s O v e r v i e w | 326

selected, it will choose the same settings as OverlapAll,
except it will set the Object Type to WorldDynamic.

Can Character Step Up On Property

The Can Character Step Up On property is used to specify
whether or not a Character will step onto the top of the
Actor when it walks into it or if it will block the Character’s
movement. This is assuming that the two Actors’ Object
Types are set to Block one another. Otherwise, this
property doesn’t apply. Also, at very small heights, a
Character will step onto an Actor when it walks into it
regardless of what this property is set to.

Figure 7.1.4 – The Can Character Step Up On property

So if the Actor is tall enough, with Can Character Step Up
On set to ECB No, if a Character walks into the Actor, it will
block the Character’s movement. But if it is set to ECB Yes,
when a Character walks into the Actor, it will step onto the
Actor instead.

If Can Character Step Up On is set to ECB Owner, then the
Actor will use the same setting as its parent. If it doesn’t

7 . 1 C o l l i s i o n s O v e r v i e w | 327

have a parent, then setting this to ECB Owner is the same
as setting it to ECB Yes.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 328

7.2 Causing Damage Due to Collisions

This section will demonstrate a practical use for collisions
by showing you how you could deduct health from a
Character when it collides with an enemy or some harmful
object. Before we get to the example, however, there are
two more Nodes you should be familiar with – the Event
Hit Node and the Apply Damage Node.

Event Hit Node

An Event Hit Node, inside an Actor’s Blueprint, will fire any
time that Actor registers a Hit Event. The Node contains
several output pins.

Figure 7.2.1 – The Event Hit Node

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 329

The My Comp pin will return which Component of this
Actor was hit. The Other pin will return the other Actor
that collided with this Actor. The Other Comp pin will
return the Component of the other Actor that was hit.

The Self Moved pin is a Boolean that will tell you if the
collision was directly caused by the player. If the player
collides with the Actor, or if a projectile fired from the
player collides with the Actor, this will return False. For
any other collisions, this will return True.

The Hit Location pin is a Vector value that will return the X,
Y, and Z coordinates of the location where the hit
occurred. The Hit Normal pin is a Vector value that will
return the direction of the impact. So it will return the
angles relative to the X, Y, and Z axes. The Normal Impulse
pin will return how much force the impact had in the X, Y,
and Z directions.

The Hit pin contains even more data about the collision. If
you drag off the pin and select “Break Hit Result”, it will
create a Break Hit Result Node containing many more
details about the collision should you need to access that
information.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 330

Figure 7.2.2 – The Break Hit Result Node

Apply Damage Node

The Apply Damage Node will activate a Damage Event for
whatever Actor is passed into its Damaged Actor pin. The
Apply Damage Node will also pass the data from its other
pins to the Damage Event. It is then up to the Actor
receiving the Damage to define in its Blueprint how it
should handle that incoming information.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 331

Figure 7.2.3 – The Apply Damage Node

The Base Damage pin is used to specify how much
Damage should be applied. So you would specify higher
Base Damages for Actors that should be more powerful or
harmful. Note that this value is arbitrary until you give it
some meaning with further logic.

Imagine that the Damage is supposed to be the result of a
Character firing a projectile and hitting an Actor with that
projectile. In that situation, the Character who fired the
projectile would be considered the Event Instigator and
the projectile itself would be considered the Damage
Causer. So if you needed to pass that information into the
Damage Event, you would use those pins.
Using a Damage Type Class is optional, but if you want,
you could create Blueprints that specify different types of

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 332

Damage, and then use this pin to specify which type of
Damage this is supposed to be.

Damage Example

In this example, we will use a Cube Mesh to represent an
enemy or some sort of object that would cause harm upon
contact. The cube’s Simulation Generates Hit Events
property has been checked and it is set to block all other
Actor types.

The cube has been converted into a Blueprint Class by
clicking on the blue “Blueprint/Add Script” button in the
Details Panel. In the cube’s Blueprint, an Event Hit Node
has been added that will cause an Apply Damage Node to
fire. The Other pin of the Event Hit Node has been
connected to the Damaged Actor pin of the Apply Damage
Node, meaning that whatever Actor collides with the cube
will register a Damage Event.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 333

Figure 7.2.4 – The logic in this Cube’s Blueprint will cause
Damage to be applied to any Actor that collides with it

In the Character Blueprint, a Float variable named
“Health” has been added and given a default value of 100.
An Event AnyDamage Node has been added that will fire
any time the Character registers a Damage Event. The
Event AnyDamage Node will trigger a Set Node that will
set the Health variable to whatever its current value is
minus the amount of Damage received in the Damage
Event. This calculation is performed by a Float Minus Float
Node.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 334

Figure 7.2.5 – When this Character takes Damage, the
value of that Damage will be subtracted from the
Character’s Health variable

After the new value of the Health variable is set, a Print
String Node will print this value to the screen so the player
can see how much health the Character has remaining.
When connecting the pin containing the value of the
variable to the In String pin, a Node was automatically
created in-between to convert the data from a Float to a
String.

However, there is still a slight problem with this example.
If the Character runs into the cube even for a half-second
and the game is running at thirty frames per second, that
means that the Event Hit node is going to fire fifteen
times, because that is the number of frames of gameplay
that is occurring during that half-second. With the current
logic, this will cause the Character to get health deducted
fifteen times.

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 335

Making a Character Temporarily Invincible

The solution is to make your Character temporarily
invincible after every time they receive Damage. You've
probably noticed in several games that when your
Character takes damage, there is a split-second where
they are immune to additional damage. This is to get
around this problem of the game registering multiple
collisions for what you and I would think of as just a single
collision.

This can be accomplished by using a DoOnce Node and a
Delay Node in the following manner:

Figure 7.2.6 – This will make the Character invincible for a
half-second after it takes Damage

Now when the Character takes Damage, after it deducts
the Damage from the health and prints the health to the

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 336

screen, there will be a half-second delay during which the
DoOnce Node will be closed. Any Damage Events that fire
during that half-second will be blocked by the closed
DoOnce Node. Then, after the half-second has expired, the
DoOnce Node will get reset, and Damage Events will once
again affect the Character.

Destroying a Character

The following logic can be added to the above example to
destroy the Character once the Character's Health reaches
zero:

Figure 7.2.7 – This logic will destroy the Character when its
Health reaches zero

7 . 2 C a u s i n g D a m a g e D u e t o C o l l i s i o n s | 337

Instead of going straight to the Print String Node after
setting the new Health value, the Blueprint will first check
to see if the Health has reached zero yet. It does this by
using a Float Less-Than-Or-Equal-To Float Node that will
look at the Float value in its first input pin and tell you if
that value is less than or equal to the Float value in its
second input pin.

If the Health variable is less than or equal to zero, the
Branch Node will route execution to a DestroyActor Node
which will destroy the Actor in its Target pin. Otherwise,
the Branch Node will route execution to the Print String
Node as before.

7 . 3 C h a p t e r 7 Q u i z | 338

7.3 Chapter 7 Quiz

1. If two Actors are set to Block one another’s type, and
the Simulation Generates Hit Events property is True
for Actor 1 and False for Actor 2, when they collide,
will Actor 1 register a Hit Event?

2. If two Actors are set to Overlap one another’s type,
and the Generate Overlap Events property is True for
Actor 1 and False for Actor 2, when they overlap, will
Actor 1 register an Overlap Event?

3. What do Query Collisions and Physics Collisions refer
to?

4. If an Actor doesn’t move, what should you set its
Object Type to?

5. What should you set the Trace Responses to for a
Static Mesh Actor meant to represent a transparent
glass wall?

6. What does an Apply Damage Node do?

7. In a general sense, what is the strategy to prevent an
Actor from registering too many Damage Events
when colliding with something the applies Damage to
it?

7 . 3 C h a p t e r 7 Q u i z | 339

Answers

1. Yes. For an Actor’s Hit Event to fire, only the
Simulation Generates Hit Events property for that
Actor needs to be True.

2. No. For an Actor’s Overlap Event to fire, both the
Actors involved must have their Generate Overlap
Events property set to True.

3. Query Collisions refer to overlap collisions and Physics
Collisions refer to blocking collisions.

4. WorldStatic

5. Overlap. This means other Actors will be able to
register that the wall is there and also be able to
detect Actors that are behind the wall.

6. An Apply Damage Node will activate a Damage Event
for the Actor connected to its Damaged Actor pin. It
will also pass the data from its other pins to the
Damage Event.

7. Make that Actor temporarily immune to Damage for a
short time after each Damage Event.

C h a p t e r 8 – U s e r I n t e r f a c e s | 340

8
User Interfaces

8 . 1 U M G O v e r v i e w | 341

8.1 UMG Overview

In this chapter, you will learn how to create user interfaces
for your game, such as menus and HUDs. Menus are used
when the player needs to make a choice from a list, such
as choosing between “Start New,” “Continue,” and
“Options” at the beginning of a game.

HUD stands for “Heads Up Display.” This is the information
that is displayed to the player while the game is in
progress. For example, health, ammo, score, time
remaining, etc.

History of Unreal Interfaces

There are a few different ways to create menus and HUDs
in Unreal Engine. The original way was to create a HUD
Blueprint. Then, you would script the User Interface
elements in this Blueprint, and then go into the Game
Mode and set that HUD Blueprint as the default for the
Game Mode.

This method is outdated, but it is covered here so that if
you run across a HUD Blueprint, you know what it is, and
also so you don’t wonder why we aren’t setting the HUD
Class in the Game Mode like we are the other classes.

8 . 1 U M G O v e r v i e w | 342

In Unreal Engine 3, Epic Games released the Slate
framework, which was an improved method for creating
UI elements, but one that was still pure scripting.

Finally, in Unreal Engine 4, they built a framework on top
of Slate called Unreal Motion Graphics, or UMG for short.
What’s great about UMG is that it’s a visual system for
creating UI elements. This makes it much quicker to create
your layouts and much easier to see what the result will
be.

Widget Blueprints

To use UMG, you will first need to create a Widget
Blueprint. A Widget Blueprint is where you will design the
layout you want to use for your HUD, menu, etc. If you’re
not familiar with the term widget - in the context of
computing, the definition of a widget is “a component that
enables a user to perform a function.” That’s basically
what a widget is in UMG. For example, you might create a
menu widget that enables a user to choose from a list of
options.

Another thing you should know about widgets in UMG is
that widgets can, and often do, contain other widgets. For
example, a menu widget would probably be made up of
multiple button widgets. And then the menu widget itself

8 . 1 U M G O v e r v i e w | 343

could be placed inside another menu widget as a sub-
menu, and so on.

To create a Widget Blueprint, go to the Content Browser,
click the “Add New” button, scroll down to “User
Interface,” and select “Widget Blueprint.”

Figure 8.1.1 – Adding a new Widget Blueprint

8 . 1 U M G O v e r v i e w | 344

In order for a widget to appear in-game, it will need to be
called from another Blueprint, such as the Level Blueprint
or the Blueprint of a Pawn. The following is an example of
calling a widget named “My Widget” from a Character
Blueprint:

Figure 8.1.2 – This logic renders a Widget Blueprint named
“My Widget” in memory and adds it to the screen

The Create Widget Node will create a copy of the widget
specified in its Class pin. The Owning Player pin specifies
the Player Controller that the widget should be applied to.
If nothing is connected, it will be applied to the default
Player Controller.

The Add to Viewport Node will display the widget passed
into its Target pin on the screen. When you want to
remove a widget from the Viewport, you need to use the
Remove From Parent Node, and connect the widget you
want removed to that Node’s Target pin.

8 . 1 U M G O v e r v i e w | 345

Widget Blueprint Editor

The Widget Blueprint Editor is divided into two tabs - the
Designer tab, where you construct the interface, and the
Graph tab where you can script logic for the interface. You
can switch between the two by clicking on their buttons in
the upper-right.

Figure 8.1.3 – These buttons are used to switch between
the Designer tab and Graph tab

The main window of the Designer tab is the Visual
Designer in the center. This is where you will create the
layouts for your interfaces.

8 . 1 U M G O v e r v i e w | 346

Figure 8.1.4 – The Visual Designer

In the upper-left, is the Palette window. This window
contains pre-made widgets that you can drag-and-drop
into the Visual Designer to construct your layouts.

8 . 1 U M G O v e r v i e w | 347

Figure 8.1.5 – The Palette window

Below that is the Hierarchy window. This window is very
similar to the World Outliner in the Level Editor. It
organizes the elements in the Visual Designer and shows
their parent-child relationships.

8 . 1 U M G O v e r v i e w | 348

Figure 8.1.6 – The Hierarchy window

To the right of the Visual Designer is the Details window.
This is just like its counterpart in the Level Editor. When
you select one of your widgets, you will be able to view
and edit the properties of that widget in the Details
window.

8 . 1 U M G O v e r v i e w | 349

Figure 8.1.7 – The Details window

At the bottom are two windows that can be used to
animate your layouts. For example, if you had a menu, you

8 . 1 U M G O v e r v i e w | 350

could make it fly in from the edge of the screen or
something, if you wanted, instead of it just appearing.

At the top is the Toolbar. It contains a Compile button and
a Save button, like in other Blueprints. To the right of the
Save button is the Find in Content Browser button. If you
have an element in your layout that came from the
Content Browser and not from the Palette window, you
can select that element and click the Find in CB button to
be taken to that asset within the Content Browser.

Figure 8.1.8 – The Toolbar

The Play button will start a simulation of your game in the
Level Editor, just like the Play button in that window will.
But the reason there is a Play button here as well, is
because whenever your game is being simulated, the UI
portion of the game will be simulated in the Visual
Designer.

8 . 2 R o o t W i d g e t | 351

8.2 Root Widget

A Widget Blueprint will always consist of at least a Root
Widget, which will have the same name as the Widget
Blueprint itself. The Root Widget will always be the first
element listed in the Hierarchy window.

Whenever you create a new Widget Blueprint, it will, by
default, start out with a Canvas Panel added as a child of
the Root Widget. The Canvas Panel will be covered in
detail in the next section, so, for now, just know that it is a
container that is used to hold other widgets.

Figure 8.2.1 – The Root Widget of a Widget Blueprint
named “MyWidget” with a Canvas Panel child

Color and Opacity

If you select the Root Widget, you can view and edit its
properties in the Details window. Starting with the
Appearance category, you have the Color and Opacity and
the Foreground Color properties. Both of these colors can

8 . 2 R o o t W i d g e t | 352

be set either by clicking on the colored strip and using the
Color Picker, or by expanding their respective menus and
setting the red, green, blue, and alpha settings directly.

Figure 8.2.2 – The Appearance category for a Root Widget

Whatever color you set the Color and Opacity to in the
Root Widget will be applied to all child widgets. That color
will be combined with the color of the child itself, with the
color white being ignored. Here are a few examples to
clarify this.

Imagine that a Text Widget has been added as a child of
the Canvas Panel. Because the Canvas Panel is a child of
the Root Widget, by extension, the Text Widget is now
also a child of the Root Widget. If the color of the Root

8 . 2 R o o t W i d g e t | 353

Widget is white, and the color of the Text Widget is blue,
then the white will be ignored, and the text will appear
blue. Conversely, if the Root Widget is set to blue, and the
Text Widget is set to white, the white of the Text Widget
will be ignored, and the text will again appear blue.

But now let’s say that the Root Widget is set to blue, and
the Text Widget is set to yellow. These two colors will
combine, and the text will appear green. So again, the
Color and Opacity of the Root Widget gets combined with
the color of the child, with the color white being ignored.

Foreground Color

The Foreground Color property of the Root Widget is
similar to the Color and Opacity property, except that it
will only be applied to children whose color property is set
to Inherit. Note that not all color properties have an Inherit
property, so you won’t be able to apply this to all types of
widgets.

If the Color and Opacity of the Root Widget is set to white
and the Foreground Color is set to yellow, and the Color
and Opacity of the Text Widget is set to red, the text will
appear red. But if the Inherit property of the Text Widget
is checked, the color of the text changes to yellow,
because it is now ignoring the red color and instead

8 . 2 R o o t W i d g e t | 354

inheriting from the next highest color property which is
the Foreground Color property of the Root Widget.

Now, if the Color and Opacity of the Root Widget is
changed to blue, the text will appear green because the
Text Widget is now receiving the blue from the Color and
Opacity property and the yellow from the Foreground
Color property.

The Foreground Color property of the Root Widget has an
Inherit property itself. If this is checked, the color set there
will be ignored, and the Foreground Color will instead
inherit the color of the Color and Opacity property.

Continuing with the above examples, if the Inherit
property of the Foreground Color of the Root Widget was
checked at this point, the text will appear blue again,
because the Text Widget is inheriting the color of the Root
Widget’s Foreground Color property, which is in turn
inheriting the color of the Root Widget’s Color and Opacity
property.

Is Focusable

The Interaction category contains just one property, Is
Focusable. If this is checked, the widget will be able to
attain focus. A widget can attain focus by being clicked on,

8 . 2 R o o t W i d g e t | 355

or navigated to by the keyboard. A widget that has focus
will be able to accept input from the keyboard.

Figure 8.2.3 – The Interaction category

For example, if a button has focus, then pressing Enter on
the keyboard will cause that button to be pressed. If Is
Focusable is unchecked, the widget will not be able to be
navigated to, and if it is clicked on, it will still register click
events, but it will not take focus away from whatever
other widget currently has it.

Background Property

The Designer category also contains just one property,
Background. You can use the dropdown to choose an
image, and whatever image you select will be used as the
background for the entire widget.

8 . 2 R o o t W i d g e t | 356

Figure 8.2.4 – The Designer category

8 . 3 C a n v a s P a n e l | 357

8.3 Canvas Panel

Whenever you create a new Widget Blueprint, it will
automatically add a Canvas Panel to the Root Widget by
default. However, you can delete it if you want, and you
can manually add Canvas Panels to the layout via the Panel
category of the Palette.

In the context of UMG, a Panel is a container that is useful
for aligning widgets and moving widgets as a group. Each
Panel has its own unique type of slot, which gives its
children different positioning and sizing capabilities.

For example, when a widget is added to a Canvas Panel, it
is placed inside of a Canvas Panel Slot. A Canvas Panel Slot
allows for absolute positioning, meaning you can specify
the exact location you want the widget to be located
within the Canvas Panel. If you added a widget to a Grid
Panel, however, it would go into a Grid Slot, and you
would specify the widget’s location by row and column
instead of by exact pixels.

Canvas Panel Slot Properties

You can position a widget inside of a Canvas Panel using
the Position X and Position Y properties. You can size the
widget to an exact size using the Size X and Size Y
properties.

8 . 3 C a n v a s P a n e l | 358

Figure 8.3.1 – The properties of a Canvas Panel Slot

Anchors

Up at the top of the Slot category are Anchors. Anchors are
a way to specify where on the edge of the Panel the
location of a Widget should be measured from, in the
scenario that the window size or screen size changes.

An Anchor Medallion will appear in the spot where the Slot
is anchored. For example, if a button is placed into a slot
and anchored to the top-left of the screen, an Anchor
Medallion will appear in the top-left corner of the Visual
Designer. If you ran the game, no matter how you resized
the window, the button would stay in the same position
relative to the top-left corner.

8 . 3 C a n v a s P a n e l | 359

Figure 8.3.2 – An Anchor Medallion

By clicking on the Anchors button, you can choose a
different location to anchor the widget. You could anchor
it to the top-center edge, to the upper-right corner, and so
on. There are also six Anchors available that will anchor
the widget to two sides of the canvas. The Anchor in the
bottom-right of the Anchor Menu will anchor the widget
to all four corners of the canvas and stretch and shrink it in
all directions as you resize the window.

The coordinate system that the Position X and Position Y
properties use is based on where the widget is anchored
to. So when a slot is anchored to the top-left, the position
(0,0) is located in the top-left. But if the slot were
anchored to the top-right, then position (0,0) would be
located in the top-right, and so on.

The question of which point on the widget should be used
as the Anchor’s location is determined by the Alignment
property. The Alignment property uses a coordinate
system where (0,0) represents the top-left corner of the
widget, and (1,1) represents the bottom-right.

8 . 3 C a n v a s P a n e l | 360

So if a slot is anchored to the top-left, and its position is
set to (0,0), when its Alignment is set to (0,0), its top-left
corner will align with the top-left corner of the Canvas.

Figure 8.3.3 – A Button Widget anchored to the top-left, at
position (0,0) and alignment (0,0)

If the Alignment was changed to (1,1), its bottom-right
corner will be aligned with the corner of the Canvas.

8 . 3 C a n v a s P a n e l | 361

Figure 8.3.4 - A Button Widget anchored to the top-left, at
position (0,0) and alignment (1,1)

If it were changed to (0.5,0.5), the center of the slot will be
aligned with the corner.

8 . 3 C a n v a s P a n e l | 362

Figure 8.3.5 - A Button Widget anchored to the top-left, at
position (0,0) and alignment (0.5,0.5)

Size to Content

Normally, a Text Widget will not resize its box even if the
text inside it is too large to hold. In this scenario, you could
manually resize the box using the Size X and Size Y
properties. But if you want the box to be exactly big
enough to show the text inside of it, you can check the Size
to Content property and it will automatically adjust the
size. Note that when the Size to Content property is
checked, the Size X and Size Y settings will be ignored.

ZOrder

The ZOrder property determines the order in which
widgets get drawn to the screen and, thus, for widgets in
the same location, determines which widget overlaps
which. Lower numbers get drawn first.

If you have a button whose ZOrder is 0, and some text
whose ZOrder is 1, then the button will be drawn first,
followed by the text. So if these are in the same location,
the text will overlap the button since it gets drawn last.

8 . 3 C a n v a s P a n e l | 363

Figure 8.3.6 – A Button Widget with a ZOrder of 0 and a
Text Widget with a ZOrder of 1

But if the ZOrder of the button was changed to 2, then the
button would now get drawn last and thus appear on top.

Figure 8.3.7 - A Button Widget with a ZOrder of 2 and a
Text Widget with a ZOrder of 1

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 364

8.4 Common Widget Properties

There are four categories in the Details Panel that are
common to all widgets, and those are Behavior,
Performance, Render Transform, and Navigation.

Behavior Category

Starting with the Behavior category, the first property is Is
Enabled. If this is unchecked, it will disable the widget,
meaning it cannot be interacted with by the user. So
widgets like buttons, checkboxes, sliders, and so on, will
not be able to receive input. For example, a disabled
button will be a darker shade of grey than an enabled
button, and if you click on it, it won’t change color like an
enabled button because it is not registering the click.

Figure 8.4.1 – The Behavior category

To the right of the Is Enabled property, and several other
properties as well, is a dropdown that says Bind. You can

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 365

use this to bind the property that it’s next to, to a variable.
For example, you could create a Boolean variable and if
you bound that to the Is Enabled property for a button,
then when that variable were True, the button would be
enabled, and when it was False, the button would be
disabled. This allows widgets to have properties that can
change during run-time if your game logic ends up
changing the value of the variable that the property is
bound to.

The next property is Tool Tip Text. By adding text to this
property, it will cause that text to appear whenever the
user hovers the mouse over the widget. This is useful for
providing further clarity to the user about how to use the
widget, or what its purpose is.

The next property is Visibility. By default, it is set to Visible
which means it can be seen by the user, interacted with by
the user, and it takes up space in the layout. If a widget is
set to Collapsed, it will be invisible to the user, it cannot be
interacted with by the user, and it won’t take up any space
in the layout. If a widget is set to Hidden, it will be invisible
to the user, and cannot be interacted with by the user, but
it will take up space in the layout.

A setting of Hit Test Invisible is essentially the same as
making the widget not focusable and not enabled, with
the exception being that its appearance won’t change, so
it won’t be grayed out like a widget normally would be

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 366

when disabled. The final value is Self Hit Test Invisible. This
is the same as Hit Test Invisible except that it won’t apply
to child widgets like the Hit Test Invisible setting will.

Performance Category

The next category, Performance, has just one property, Is
Volatile.

Figure 8.4.2 – The Performance category

The Is Volatile property is used with the Invalidation Box
widget in the Optimization category of the Palette. The
purpose of the Invalidation Box is to cache its children
widgets, meaning save them in memory. This will increase
performance if those widgets don’t change often. But if
one of those child widgets does change often, such as one
that animates and needs to be drawn differently each
frame, you would not want to try to cache that widget. In
that scenario, you would set the widget’s Is Volatile
property to True, to prevent it from being cached.

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 367

Render Transform Category

The next category is Render Transform. If you expand the
Transform menu, you will see four properties, Translation,
Scale, Shear, and Angle.

Figure 8.4.3 – The Render Transform category

With the Translation property, you can change the
location of the widget. With the Scale property, you can
change the size of the widget. These work very similar to
the Position and Size properties inside of a Canvas Panel
Slot. But the transform that occurs within a slot is known
as a Layout Transform, as opposed to a Render Transform.
The difference is that a Layout Transform can affect and be
affected by the other widgets in the layout while a Render
Transform will ignore the layout.

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 368

For example, imagine there were three buttons in a row,
side-by-side, inside a Horizontal Box Panel (Horizontal Box
Panels will be covered later in the chapter).

Figure 8.4.4 – Three Button Widgets in a Horizontal Box
Panel

If you increased the size of the middle button with a
Layout Transform, by adjusting the properties of its
Horizontal Box Slot, it would shrink the size of the two
buttons beside it.

Figure 8.4.5 – The size of the middle button has been
increased via a Layout Transform

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 369

Also, the size you could increase the middle button would
be limited by the size of the Horizontal Box that it’s in.
However, if you change its size using a Render Transform,
by adjusting the Scale property of the Render Transform
category, the other two buttons will be ignored, as will the
bounds of the Horizontal Box.

Figure 8.4.6 - The size of the middle button has been
increased via a Render Transform

Most of the time, you will want to use Layout Transforms
to set the position and size of your widgets, but Render
Transforms can be useful in some situations, such as
animating your widgets.

The next property is Shear. You can use the Shear property
to distort the widget diagonally.

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 370

Figure 8.4.7 – The Shear property can be used to skew the
shape of widgets

The Angle property can be used to rotate the widget.

Figure 8.4.8 – Changing the Angle property will rotate a
widget

Finally, there is the Pivot property. Just like the Alignment
property of the Canvas Panel Slot, this uses a coordinate
system of (0,0) to indicate the top-left of the widget and
(1,1) to indicate the bottom-right of the widget. By default,

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 371

it is set to (0.5,0.5) which places the pivot point in the
center of the widget. So with the pivot point in the center,
if you were to, for example, rotate the widget, it would
rotate around its center. If you scaled the widget, it would
expand outwards from the center and inwards towards
the center.

But if you were to change this to (0,0), then the pivot point
would now be the top-left corner of the widget. Now if
you rotate it, instead of it rotating around its center, it will
rotate around its top-left corner. When you scale the
widget, it will now expand from the left and the top.

Figure 8.4.9 – This button had its Angle property changed
while its Pivot point was set to (0,0)

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 372

Navigation Category

The final category is Navigation. This category affects how
the user can navigate to the different widgets using their
keyboard.

Figure 8.4.10 – The Navigation category

By default, all the properties here are set to Escape.
Escape basically means that you are able to escape that
widget in that direction. For example, if a button’s Left
property is set to Escape, this means that if that button
has focus and you press left on the keyboard, focus will
move left to the next widget. But if you were to change
the Left property to Stop instead, then navigation can no
longer move to the left through the widget.

The Wrap setting can be used with certain Panels, such as
a Uniform Grid Panel. This needs to be set on the Panel

8 . 4 C o m m o n W i d g e t P r o p e r t i e s | 373

itself. For example, if you had a Uniform Grid Panel that
contained a grid of buttons, and you set its Left and Right
navigation properties to Wrap, then when the player
pressed left on the keyboard when focused on one of the
left-most buttons, focus will wrap around to the first
button on the other side, and vice-versa.

By setting the value to Explicit, you can specify the widget
you want the focus to move to when navigation moves in
that direction. Simply type the name of the widget you
want focus to move to in the box that appears.

Figure 8.4.11 – When navigating to the right from this
widget, focus will move to a widget named “Button2”

8 . 5 V i s u a l D e s i g n e r | 374

8.5 Visual Designer

The Visual Designer is the main window of the Designer
tab. If you hold down the RMB and drag, you can pan
about the window. If you use the scroll wheel on the
mouse, you can zoom in and out. In the upper-left corner,
it will tell you just how much you are zoomed in or out.

In the upper-right corner, there is a row of buttons that
pertain specifically to the Visual Designer. The first pair of
buttons is used to toggle between Layout Transform and
Render Transform, and you can use the shortcut keys W
and E as well.

Figure 8.5.1 – Use these buttons to toggle between Layout
Transform and Render Transform

As discussed in the previous section, a Layout Transform is
when you adjust the positioning, etc. of a widget within its
slot, which causes the widget to be bound by the layout. A
Render Transform is when you make those adjustments
within the Render Transform category, which causes the
widget to ignore the layout.

8 . 5 V i s u a l D e s i g n e r | 375

Note that if you use Render Transform here, it will NOT
change the way the sizing control behaves when you click
and drag on the edges of a widget, it will still behave like a
Layout Transform. So these buttons only affect
positioning.

To the right of those buttons are a pair of buttons used to
set Grid Snapping. This works just like Grid Snapping does
in the 3D Viewport. This first button turns snapping on and
off, and the second button sets the Snap Size.

Figure 8.5.2 – Use these buttons to set Grid Snapping

To the right of that is the Zoom to Fit button. This will
center the layout on the screen and zoom in to it. It will
zoom in until the layout fills the screen or reaches a 1:1
aspect ratio, whichever comes first.

Figure 8.5.3 – The Zoom to Fit button

8 . 5 V i s u a l D e s i g n e r | 376

The dropdown to the right of that button can be used to
see how the layout will look on different devices and
screen sizes. There are options for various phones, tablets,
laptops, monitors, and HDTVs. The resolution and aspect
ratio of the screen size you choose can be seen in the
bottom-left corner of the Visual Designer.

Figure 8.5.4 – You can preview how your layout will look on
various screen sizes

8 . 5 V i s u a l D e s i g n e r | 377

The dropdown to the right of that can be used to choose
the overall size of the layout relative to the screen size.
With this set to Fill Screen, the layout will always be the
size of the screen it’s on. With this set to Custom, you can
choose a specific size for the layout to be, regardless of the
screen it’s on. Custom on Screen is the same as Custom
except there is an additional outline for the screen size
itself. Desired will cause the bounds of the layout to be just
large enough to fit all of the widgets within it while still
honoring the spacing set by the Anchors. With Desired on
Screen you can also see the edges of the screen.

Figure 8.5.5 – Use this menu to adjust the size of the layout
relative to the screen size

8 . 6 T e x t W i d g e t | 378

8.6 Text Widget

The Text Widget can be found in the Common category of
the Palette. When you first create a Text Widget, it will
start out with the default text “Text Block.” To change this
text, go over to the Details window and edit the Text
property in the Content category.

Figure 8.6.1 – The Content category of the Text Widget

As you saw earlier, you can set the color of the text and
how transparent it is by using the Color & Opacity
property. If you check Inherit, it will inherit the settings
from the Foreground Color of its next highest parent.

8 . 6 T e x t W i d g e t | 379

Figure 8.6.2 - The Appearance category of the Text Widget

The Font property is where you can set the Font Type,
Font Style, and Font Size. Unreal Engine only comes with
one font built-in, Roboto, so if you want to use different
fonts, you will need to import them in yourself. An easy
way to do this is to simply go into the Fonts folder of your
operating system and drag-and-drop the fonts you want
into the Content Browser. On Windows, you can get to
that folder by going to Control Panel > Appearance and
Personalization > Fonts.

The next two properties, Shadow Offset and Shadow
Color, enable you to add a shadow to your text. By default,
the color of Shadow Color is set to black, but its opacity is

8 . 6 T e x t W i d g e t | 380

set to be fully transparent, meaning it will be invisible by
default. To use the shadow, you will need to increase the
Alpha channel so that it will be visible. A value of 1 will
make the shadow fully opaque, meaning it cannot be seen
through at all.

Figure 8.6.3 – A shadow effect has been added to this text

The Shadow Offset property is used to set how far in the X
and Y directions the shadow should be located, relative to
the base text. If you increase in the X direction, the
shadow will move out to the right. At first, this has the
effect of making the shadow thicker, but if you keep going,
eventually the shadow will completely separate from the
base text.

The Justification property will simply align the text to the
left, center, or right, relative to its container.

8 . 6 T e x t W i d g e t | 381

Last, is the Auto Wrap Text property. With this unchecked,
if the text runs out of room in its container, it will simply
get cut off. With this checked, once the text reaches the
edge of the container, the rest of it will automatically wrap
down to the next line.

8 . 7 B u t t o n W i d g e t | 382

8.7 Button Widget

The Button Widget can be found in the Common category
of the Palette. In the Details window, there is an
Appearance category where you can modify how the
button looks.

Figure 8.7.1 – The Appearance category of a Button
Widget

Starting with the two color properties, Color and Opacity
will set the color of the button’s content, while
Background Color will set the color of the button itself. If
you were to add a Text Widget as a child of the Button
Widget, and then set the Color and Opacity of the button
to red, the text will turn red. If you were to set the
Background Color to red, the button itself will turn red.

The Style property is actually a collection of properties,
which in turn have their own sub-properties. The first four
properties, Normal, Hovered, Pressed, and Disabled each
represent a different state of the button. By expanding

8 . 7 B u t t o n W i d g e t | 383

their menus, you will find several properties you can edit
to alter that state’s appearance.

Figure 8.7.2 – Style properties of a Button Widget

For example, if you expanded the Hovered property, and
set its Tint to purple, then when the mouse cursor hovers
over the button, its color will change to purple. Note that
if you have set a Background Color, that the Tint will
combine with that color. So if the Background Color is

8 . 7 B u t t o n W i d g e t | 384

blue, and the Tint of the Normal state is yellow, then the
button will appear green when in its Normal state.

You can also use an image for the button’s background by
using the dropdown next to the Image property. If you
have any colors applied to the button’s background, it will
use that color as a filter on top of your image.

The next property, Image Size, doesn’t affect the button
when it’s in a Canvas Panel. In other Panels, the Image Size
property will change the size of the button, regardless of
whether or not it actually contains an image.

The Draw As property affects how the image is drawn onto
the button. With this set to Image, it will stretch or shrink
the image evenly across the entire button. You also have
the option to tile the image horizontally, vertically, or in
both directions.

If Draw As is set to Box, it will use a more complex set of
rules to stretch or shrink the image. With all the margins
set to 0, it will appear the same as if it were set to Image.
But if the Left Margin increases, it will start taking the left-
most portion of the image and shrink it into a thin margin
on the left, while stretching out the remaining portion of
the image on the right. As the size of the margin increases,
more and more of the image goes into the margin, until,
finally, all that remains on the right is a tiny sliver of the
image which gets stretched across that entire space.

8 . 7 B u t t o n W i d g e t | 385

If Draw As is set to Border, it will use the image to create a
border along the edges of the button, leaving empty space
in the middle. You can use the Margin property to set the
thickness of the border on each edge.

Figure 8.7.3 – The Draw As property of this Button Widget
has been set to Border

Next, are a couple of properties used to set the padding
for the button’s contents. You can set different paddings
for when the button is in its Normal state and for when it
is Pressed. By default, the Pressed padding has a little
more padding on top and a little less on the bottom, which
causes the contents of the button to shift down when the
button is pressed. This creates the appearance of the
button actually being pressed as if it were a 3D object.

8 . 7 B u t t o n W i d g e t | 386

You also have the option of having a sound play whenever
the button is pressed or hovered over, by using the
dropdowns of the Pressed Sound and Hovered Sound
properties, and selecting a sound Asset.

At the very bottom of the Details window, the Button
Widget has an Events category. Not all widgets have
Events tied to them, but those that do will have an Events
category.

Figure 8.7.4 – The Events category of a Button Widget

The Button Widget has three events, OnClicked,
OnPressed, and OnReleased. The OnPressed event fires
when the button is pressed. The OnClicked and
OnReleased events will fire once the button has been
pressed and then released. By clicking on the green
buttons next to their names, you can add a Node for that
Event to the graph of this widget. Note that these Events
work the same whether you are using the mouse or the
keyboard to press the button. So the “click” of the

8 . 7 B u t t o n W i d g e t | 387

OnClicked Event refers to the Button Widget being clicked,
not the clicking of a mouse.

8 . 8 B o r d e r W i d g e t & I m a g e W i d g e t | 388

8.8 Border Widget & Image Widget

The Border Widget has two main categories, Content and
Appearance.

In the Appearance category, you can alter the appearance
of the border by giving it an image, or by setting its color.
So if you wanted a simple black border, you would set the
Brush Color to black.

Figure 8.8.1 – The Appearance category of a Border
Widget

At first glance, the Border Widget will look more like a box
than a border. But when you add a child to it, the child will
be centered within it, covering up the majority of it, and
whatever peeks out around the edges essentially acts as a
border.

8 . 8 B o r d e r W i d g e t & I m a g e W i d g e t | 389

Figure 8.8.2 – A Button Widget inside of a Border Widget

In the Content category, you can adjust the padding that is
placed around the child of the widget. However thick the
padding is, is how thick your border will appear. You can
also use this category to adjust the horizontal and vertical
alignment of the widget’s child, or to set the child's Color
and Opacity.

Figure 8.8.3 – The Content category of a Border Widget

8 . 8 B o r d e r W i d g e t & I m a g e W i d g e t | 390

The only difference between the Border Widget and the
Image Widget is that the Border Widget has a Content
category since it is especially designed to have children,
and the Image Widget is not.

8 . 9 P r o g r e s s B a r W i d g e t | 391

8.9 Progress Bar Widget

The Progress Bar Widget is often used to display things like
the amount of health, magic, or energy a player has
remaining. It will measure these values by percentage by
using the Percent property of the Progress category.

Figure 8.9.1 – The Progress category of the Progress Bar
Widget

With Percent at 0, the bar will be completely empty. If it
was set to 0.5, the bar would be 50% filled, and if it was
set to the max value of 1.0, the bar would be 100% filled.
The Percent property is normally bound to the variable it is
meant to represent so that it will automatically update as
that variable’s value changes.

8 . 9 P r o g r e s s B a r W i d g e t | 392

Figure 8.9.2 – A Progress Bar Widget with its Percent set to
0.5

The color that is used to fill the bar can be set with the Fill
Color and Opacity property.

Figure 8.9.3 – The Appearance category of the Progress
Bar Widget

You also have the option of using an image to fill the
Progress Bar or have an image used as its background. In
the Style category, the Fill Image property is used for the
image that will fill the bar, and the Background Image
property will specify the image that will be used for its
background. If you still want the background to be a solid
color, just not grey, you can leave the Image property
blank, but choose a color for the Tint property of the

8 . 9 P r o g r e s s B a r W i d g e t | 393

Background Image, and it will set the background to that
color.

Figure 8.9.4 – The Style category of the Progress Bar
Widget

The default direction that the bar will fill is from left to
right, but you have the option of having it fill in different
directions, such as right to left or top to bottom, by setting
the Bar Fill Type property.

If the Is Marquee property is checked, the Progress Bar will
change from a genuine Progress Bar into a Marquee.

Figure 8.9.5 – A Progress Bar Widget with its Is Marquee
property set to True

8 . 9 P r o g r e s s B a r W i d g e t | 394

A Marquee is a bar that, instead of filling up, shows
continual movement. This is generally used to indicate to
the user that some action is taking place, when it is
unknown how long it will take to complete, and thus can’t
be represented by a regular Progress Bar. An example of a
Marquee would be when a program crashes in Windows
and it gives you the “Windows is checking for a solution”
message. That green bar is a Marquee.

Figure 8.9.6 – This bar with the green in it is an example of
a Marquee

In the Style category, you can set an image to use for the
Marquee with the Marquee Image property. If you change
the X value of the Image Size property of the Marquee
Image, it will increase or decrease the speed of the
Marquee.

8 . 1 0 C h e c k B o x W i d g e t | 395

8.10 Check Box Widget

The Check Box Widget gives you the ability to add
checkboxes to your interface.

Check Box Properties

The Check Box Widget’s initial state can be set by the
Checked State property of the Appearance category. This
can be set to Unchecked, Checked, or Undetermined. The
Undetermined setting can be used to determine whether
or not the user actually interacted with the Check Box.

Figure 8.10.1 – The Appearance category of the Check Box
Widget

In the Style category, the first property is Check Box Type.
This can be set to either Check Box or Toggle Button.
According to Epic Games, you use the Check Box setting
for a traditional checkbox while you use the Toggle Button
when you want to provide your own image. However, you
can use your own image for the checkbox regardless of

8 . 1 0 C h e c k B o x W i d g e t | 396

which setting Check Box Type is set to, so this blurs this
distinction quite a bit.

Figure 8.10.2 – The Style category of the Check Box Widget

For practical purposes, the only real difference between
the two settings is that the traditional Check Box is useful
for labeling. If you add a Text Widget as a child of the

8 . 1 0 C h e c k B o x W i d g e t | 397

Check Box when its type is set to Check Box, it will
automatically align the Text Widget to the right. But with
the Check Box set to Toggle Button, child widgets will not
align.

With Check Box Type set to Check Box, you use the
Foreground Color property to set its color, or to add a tint
to a supplied image. With it set to Toggle Button, you use
the Border Background property to set the color or tint.

Also in the Style category, you can change the appearance
of the Check Box for all the different combinations of
possible states. So all the different combinations of
Unchecked, Checked, and Undetermined, and Normal,
Hovered, and Pressed. You can use an image instead of the
default appearance, and whether you use an image or not,
you can change the size of the checkbox using the Image
Size property.

The Padding property is used to add padding around the
children of the Check Box. For example, if you add a Text
Widget to the Check Box and then increase the Left
Padding of the Check Box, it will add padding to the left of
the Text Widget which will push it further to the right.

There are also some properties to have the Check Box play
a sound when it is checked, unchecked, or hovered over.

8 . 1 0 C h e c k B o x W i d g e t | 398

Checking the State of the Check Box

When you want to see what state the Check Box is
currently in, there are a few ways to do this. One way is to
make the Check Box a variable and get the information
from that variable. At the top of the Details window, if the
Is Variable checkbox is checked, it will store the Check Box
Widget in a variable. The textbox to the left is used to
name the variable.

Figure 8.10.3 – You can store widgets in a variable by
checking the Is Variable property at the top of the Details
window

This variable will be created automatically and will be
available in the Graph tab. If you add the variable to the
graph, there are a couple of Function Nodes that you can
connect it to, to get information about the state of the
Check Box Widget.

The first Node is called Is Checked. This will output a
Boolean value of True if the Check Box is Checked, and a
value of False if the state of the Check Box is either

8 . 1 0 C h e c k B o x W i d g e t | 399

Unchecked or Undetermined. So you wouldn’t want to use
this function if you plan on using Undetermined states.

Figure 8.10.4 – The Is Checked Node

If you do plan on using Undetermined states, you will want
to use the Get Checked State Node instead. This will return
a variable of type ECheckBoxState Enum. Enum variables
were not covered in the Variables section, so they will be
covered now. An Enum, which is short for “Enumerated
Value” is a type of variable that can only hold a value from
a finite set of predefined options. For example, there could
be a Weekday Enum that can only store one of seven
possible values - Sunday, Monday, Tuesday, etc. The
ECheckBoxState Enum can only have a value of either
Checked, Unchecked, or Undetermined.

8 . 1 0 C h e c k B o x W i d g e t | 400

Figure 8.10.5 – The Get Checked State Node

You will generally use Enums in conjunction with Switch
statements, which were covered in the section on flow
control. So you will want to drag out a wire from the
Return Value pin of the Get Checked State Node, and add
a Switch on ECheckBoxState Node. From there, execution
will flow through one of the three output pins, Unchecked,
Checked, or Undetermined, based on which state the
Check Box is in.

Figure 8.10.6 – Execution will flow through one of three
pins on the Switch on ECheckBoxState Node based on the
state of the Check Box Widget that has been passed into
the Get Checked State function

8 . 1 0 C h e c k B o x W i d g e t | 401

Another way to get the state of a Check Box is to bind it to
a variable and get the information directly from that
variable. So you can create either a Boolean variable or an
ECheckBoxState Enum variable and then bind that to the
Checked State property. This saves you the step of having
to call the Is Checked or Get Checked State functions. You
will have a variable that will automatically be updated with
the latest state of the Check Box.

Finally, if something might need to occur immediately
when the state of the Check Box is changed, you will want
to use the OnCheckStateChanged Event. This Event will fire
every time the Check Box is checked or unchecked, and it
includes a Boolean return value which will tell you which
of those states it was just changed to.

Figure 8.10.7 – The OnCheckStateChanged Event Node

8 . 1 1 H o r i z o n t a l B o x & V e r t i c a l B o x | 402

8.11 Horizontal Box & Vertical Box

So far, the only Panel that has been covered is the Canvas
Panel, which allows for absolute layout. This is good when
you want a high level of manual control over the
placement of widgets, but it’s not the best for aligning
widgets.

There are several other Panels which are much more
useful for aligning widgets, and one of those is the
Horizontal Box. The Horizontal Box is comprised of a single
row of slots of equal height. It’s useful for aligning widgets
side-by-side.

For example, if you placed three Button Widgets into a
Horizontal Box, they would stack up side-by-side. If you
wanted to change their order, you could select one of
them and use the arrows that appear to move them to the
slot to the left or right. If you wanted to move all of them,
you could move them all as a group by moving the
Horizontal Box itself, and they would all remain aligned
with each other.

8 . 1 1 H o r i z o n t a l B o x & V e r t i c a l B o x | 403

Figure 8.11.1 – Three Button Widgets in a Horizontal Box
Panel

If you selected one of the buttons, you would see that the
properties in its Slot category are different than what
we’ve been seeing because the button is in a Horizontal
Box Slot as opposed to a Canvas Panel Slot.

Figure 8.11.2 – Properties of the Horizontal Box Slot

The Padding property can be used to add padding around
the content of the slot.

8 . 1 1 H o r i z o n t a l B o x & V e r t i c a l B o x | 404

By default, the Size property will be set to Auto. With it set
to Auto, the slot will be just big enough to fit its contents.
So if the width of a button inside the slot was increased,
the slot would automatically widen to fit it. If Size is set to
Fill, the slot will expand to take up the rest of the room
available.

Figure 8.11.3 – The Size property of the third button has
been set to Fill

If other slots are set to Fill, the amount of space that each
slot uses relative to each other is determined by the value
to the right of the Fill button. This value can be any
number between 0 and 1. For example, if there were three
slots, and the first was set to 1.0 and the remaining two
were set to 0.5, the first slot would be twice the size of the
other two.

The next two properties determine how the content is
aligned within the slot. By default, these are set to Fill. So
note that the Fill settings of the Alignment properties refer

8 . 1 1 H o r i z o n t a l B o x & V e r t i c a l B o x | 405

to the content of the slot filling up the slot, while the Fill
setting of the Size property refers to the slot filling up the
Horizontal Box.

The Vertical Box works just like the Horizontal Box, except
the widgets placed in it will stack vertically instead.

Figure 8.11.4 – Two Button Widgets in a Vertical Box Panel

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 406

8.12 Grid Panel & Uniform Grid Panel

Uniform Grid Panel

The Uniform Grid Panel can have both rows and columns
of slots and what makes it special is that all of its slots will
always be the same size as each other.

By default, children added to a Uniform Grid Panel will be
placed in Row 0, Column 0, which will always be the
upper-leftmost slot of the Panel. If you want to place a
child in a different row or column, you can move it using
the arrow buttons, or use the Row and Column properties
in the Slot category. Also, by default, content will be
aligned to the left and top of the slot.

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 407

Figure 8.12.1 – A Button Widget located in row 0, column 0
of a Uniform Grid Panel

The Uniform Grid Panel has three unique properties within
a category called Child Layout. The first is Slot Padding,
which will simply apply the same amount of padding to
each of the slots.

Figure 8.12.2 – The Child Layout category of a Uniform
Grid Panel

The next two properties, the Minimum Desired Slot Width
and Minimum Desired Slot Height, apply when the Panel’s
Size to Content property is checked. With Size to Property
unchecked, the content is sized to match the size of the
slots. But with Size to Content checked, the slots will resize
to match the sizes of the content. The “Minimum Desired”
properties, however, can override the Size to Content
property, if the content doesn’t force the slot to be at least
the minimum size specified.

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 408

Grid Panel

The Grid Panel is similar to the Uniform Grid Panel, but its
slots can be different sizes from each other.

The easiest way to use a Grid Panel is to first specify the
number of rows and columns it will have and then add the
content. To add rows and columns, use the Fill Rules
category. For example, to make a 2x2 grid, click the add
button of the Column Fill property twice and click the add
button of the Row Fill property twice.

Figure 8.12.3 – The Fill Rules category of a Grid Panel with
two rows and two columns

You can specify the amount of the space each row or
column should occupy relative to each other by using the
textboxes to the right. These work just like the Horizontal

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 409

or Vertical Box did, with the exception that these values
can be set to any number, not just those between 0 and 1.

Grid Slot Properties

The first two properties of a Grid Slot are Horizontal
Alignment and Vertical Alignment. These are used to
change the alignment of the content within the slot. By
default, they are set to Fill.

Figure 8.12.4 – Properties of a Grid Slot

In addition to using the arrows to position content, you
can directly set the row and column it should be placed in
by setting the Row and/or Column property. Just like the
Uniform Grid Panel, the Grid Panel is zero-based, so 0 is
the first row, and 1 is the second row and so on.

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 410

Unlike the Uniform Grid Panel, the slots of the Grid Panel
have the ability to span rows and columns. For these span
properties, Row Span and Column Span, the values 0 and 1
do the same thing, which is to have the slot maintain its
default behavior of only occupying a single row and
column. But if the Row Span of a slot were changed to 2, it
would span 2 rows. Or if Column Span was changed to 2, it
would span two columns.

Figure 8.12.5 – A Button Widget in row 0, column 0 with a
Column Span of 2

The next property, Layer, comes into play when widgets
overlap. This property is just like the ZOrder property of
the Canvas Panel Slot. Widgets in slots with higher Layer

8 . 1 2 G r i d P a n e l & U n i f o r m G r i d P a n e l | 411

numbers will be drawn last, and thus drawn on top of
other widgets in slots with lower numbers. Also, if a user
clicks in the overlapping area, the widget in the slot with
the highest number will register the click.

The final property, Nudge, is used to add an offset to the
location of the slot. So if you wanted to move a slot to the
right 20 units, you would enter “20” for the X value. Note
that you need to compile the Blueprint in order for
changes to the Nudge property to be reflected in the
Visual Designer.

Figure 8.12.6 – A Button Widget that has been nudged 20
units to the right

8 . 1 3 C h a p t e r 8 Q u i z | 412

8.13 Chapter 8 Quiz

1. What does HUD stand for?

2. What visual-based framework does Unreal Engine 4
use for developing user interfaces?

3. What type of Blueprint is used to create user
interfaces in Unreal Engine 4?

4. What Node takes a widget as input and then displays
that widget on the screen?

5. True or False: Whatever color you set the Color and
Opacity to in the Root Widget will be applied to all
child widgets and will be combined with the color of
the child itself.

6. What type of Panel is best for absolute positioning of
its children?

7. What type of Panel is best for perfectly aligning its
children evenly with one another?

8. What is the ZOrder property used for?

9. What does it mean when a widget’s Visibility
property is set to Hidden?

8 . 1 3 C h a p t e r 8 Q u i z | 413

10. How would you use a Progress Bar Widget to

automatically represent the value of a numerical
variable during runtime?

11. What is an Enum variable?

8 . 1 3 C h a p t e r 8 Q u i z | 414

Answers

1. Heads Up Display

2. Unreal Motion Graphics (UMG)

3. Widget Blueprint

4. Add To Viewport Node

5. True

6. Canvas Panel

7. Uniform Grid Panel

8. Used to determine the order in which widgets get
drawn to the screen and, thus, for widgets in the
same location, determines which widget overlaps
which.

9. The widget will be invisible to the user, and cannot be
interacted with by the user, but it will take up space
in the layout.

10. Bind that variable to the Progress Bar’s Percent
property.

8 . 1 3 C h a p t e r 8 Q u i z | 415

11. A type of variable that can only hold a value from a

finite set of predefined options.

C h a p t e r 9 - A u d i o | 416

9
Audio

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 417

9.1 Audio Overview & Sound Waves

This chapter will cover the use of audio within the Unreal
Engine, so that you will be able to add dialogue, music,
and sound effects to your game. The Audio folder in the
Starter Content contains some existing audio Assets you
can use as you read this chapter.

Unreal Engine uses .wav files, pronounced “wave,” to
handle audio. If you have some audio you want to use
that’s in a different format, such as an MP3, you will first
need to convert it to a wave file, which will be covered
later in the chapter.

When you import a wave file into Unreal Engine, it will
become a Sound Wave Asset in the Content Browser, and
its icon will have a black background with the actual
waveform of that sound shown in white. If the wave has
more than one channel, there will be a separate waveform
for each channel.

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 418

Figure 9.1.1 – A Sound Wave

If you want to combine sounds and/or add effects to them,
you can do so using a Sound Cue, which is represented by
an icon with a blue background and a picture of a speaker
and waveform. Note that, unlike the Sound Wave, the
waveform on the Sound Cue icon is generic and doesn’t
represent the actual waveform that is produced by the
Asset.

Figure 9.1.2 – A Sound Cue

Ambient Sound Actor

If you drag either a Sound Wave or a Sound Cue into your
Level, it will create what’s called an Ambient Sound Actor.

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 419

Figure 9.1.3 – An Ambient Sound Actor

It will automatically assign whatever Asset you dragged in,
as the Asset for that Actor’s Sound property.

Figure 9.1.4 – The Sound category of an Ambient Sound
Actor

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 420

If you want to preview the sound, you can use the Play and
Stop buttons, located above the Sound property. For
Sound Cues, you can use the Edit button to open the
Sound Cue in the Sound Cue Editor. If you want to create a
new Sound Cue to use for the Actor, you can use the New
button.

By default, any sounds coming from an Ambient Sound
Actor will be paused when the game is paused. If you want
a sound to be able to play while the game is paused, you
would need to set the Is UISound property to True.

You also have the option of adjusting the Ambient Sound
Actor’s Volume or Pitch.

The Priority and Override Priority properties are used when
the Actor is playing multiple instances of its sound
concurrently. The concept of concurrency will be covered
later in the section.

By default, an Ambient Sound Actor’s Auto Activate
property is set to True. With it set to True, the sound will
play as soon as the Actor is created. By default, the
Ambient Sound Actor will only play its sound once. If you
want the sound to be continuous, you will need to set it to
loop. With a Sound Wave, this can be accomplished by
setting its Looping property to True. With a Sound Cue,
this is done by using a Looping Node.

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 421

Sound Wave Properties

If you want to edit the properties of a Sound Wave, you
simply need to double-click on it in the Content Browser.

You can set the compression of the wave using the
Compression Quality property. This can have a value from
1 to 100, where lower numbers represent more
compression and higher numbers represent better quality.
So if you want the sound to sound as good as it can, and
you’re not worried about the file size, you would want to
set this to a high number. If you don’t care about the
quality of the sound and you just need to save space
somewhere, you could set this to a low number.

Figure 9.1.5 – The Compression category of a Sound Wave

In the Subtitles category, you can add subtitles to the
Sound Wave, and edit their properties. To add a subtitle,
go to the Subtitles property and click the plus sign. Then
you enter the text of the subtitle in the Text property and
the time it should appear on the screen in the Time
property. The Time property refers to the amount of time
that has elapsed since the Sound Wave began playing.

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 422

Figure 9.1.6 – The Subtitles category of a Sound Wave

There is also a Spoken Text property. The difference
between the Spoken Text property and the Text property
is that the Text property is for the text that should appear
on the screen, while the Spoken Text property is for the
dialogue that was actually spoken. For example, there
might be the word “angrily” in brackets indicating that the
speaker is speaking in an angry tone. Or if the subtitles are
in a different language, then obviously the two texts will
be different.

The Mature property is used to flag a piece of audio that
contains mature content, such as adult language. This can
be used to more easily create a “clean” version of your
game later, by having the ability to filter out all mature
content.

By default, the Engine will automatically wrap your
subtitles to the next line if they get too long, but if you
don’t want the Engine to do this - for example, if you have

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 423

already split the subtitles manually - you can set Manual
Word Wrap to True to disable automatic wrapping. If you
want to force all subtitles to only display on one line, you
can set the Single Line property to True.

The final Subtitle property is Comment. If you plan on
having your game translated into other languages, the
Comment property can be useful for adding contextual
information about the piece of dialogue that the translator
can use to create a more accurate translation.

In the Sound category, you can adjust the volume and
pitch of the Sound Wave, and you can also place it into a
Sound Group. So you can specify if it should go in Effects,
UI, Music, or Voice. Or, if it doesn’t fit into any of those
categories, you can just leave it in the Default group.
Groups are useful for being able to apply a setting to an
entire group of related Sound Waves, instead of having to
apply that setting to each individual one.

Figure 9.1.7 – The Sound category of a Sound Wave

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 424

Sound Class is similar in concept to Sound Group, except
it’s more robust, you can save and reuse Sound Classes,
and you can create your own custom groupings.

Below that are some read-only properties that provide
some important information about the Sound Wave,
including the number of channels it has, its sample rate,
how long it is, and the file path to the actual wave file that
the Sound Wave Asset uses.

Figure 9.1.8 – The Info and Import Settings categories of a
Sound Wave are read-only

The Concurrency category is used to specify what should
happen when multiple instances of the Sound Wave are
played at the same time. If you want to use pre-existing
Concurrency Settings, you will need to set the Override
Concurrency property to False, and then select the settings
using the dropdown. If you want to specify new
concurrency settings, then you need to set Override
Concurrency to True, and then you will be able to expand
the Concurrency Overrides property.

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 425

Figure 9.1.9 – The Concurrency category of a Sound Wave

The Max Count property specifies how many instances of
the sound are allowed to be playing at once. The Limit to
Owner property specifies if the Max Count should only be
applied per sound Actor, or if it should be applied to all
instances of the Sound Wave that are being played from
any sound Actor.

If the Max Count is reached and another instance of the
sound tries to play, you can set how the conflict should be
resolved using the Resolution Rule property. For example,
you could set it to prevent the new instance from being
played, or set it so that the oldest instance is stopped to
make room for the new instance, and so on.

With the Volume Scale property, you can cause older
instances to become quieter as new instances of this
sound are played. With this set to 1.0, there will be no
difference in volume. But if you set this below 1.0, older
instances will become quieter and quieter as newer

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 426

instances are played, and the lower the number is, the
more dramatic the effect.

This Priority property, along with the Priority property we
saw earlier on the Ambient Sound Actor, is used in
conjunction with setting the Resolution Rule to Stop
Lowest Priority.

Below the Concurrency category is the Attenuation
category. The concept of attenuation will be covered in
detail later in the chapter.

Play Sound Nodes

We already saw how to have a sound play immediately
when the Level begins, but often times, you won’t want a
sound to be played until certain conditions are met, or a
certain event is triggered. In these cases, you can use
Blueprints to specify when the sound should be played.

If you go into the Level Blueprint, open the Node Menu,
and type “Play Sound,” you will see several Nodes
available for playing a sound. For one thing, you can
choose to either play a sound, or spawn a sound. The
difference is that when you spawn a sound you have
control over it. You can choose to stop playing the sound
at any point, or modify its properties. But when you play a
sound, you don’t have any control over it. You can’t

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 427

modify it or stop it. It will continue playing until it’s
finished, and if it’s set to loop it will continue playing for
the rest of the game.

Figure 9.1.10 – There are various Nodes you can use to
play a sound

You can also choose to have a sound come from a certain
location in the game, or make it a 2D sound which will be
heard at the same volume regardless of your location in
the game. If you use one of the location Nodes, such as
Play Sound at Location, you will need to pass in the
location where you want the sound to play from. If you
wanted it to play from the location of a certain Actor, you
could use the GetActorLocation Node to get that Actor’s

9 . 1 – A u d i o O v e r v i e w & S o u n d W a v e s | 428

location. Or, with the Spawn Sound Attached Node, you
can attach a sound to an Actor directly and the sound will
travel with that Actor.

Figure 9.1.11 – This logic will play a sound, emanating
from the location of a Trigger Volume, whenever any Actor
enters the Trigger Volume

9 . 2 – S o u n d C u e s | 429

9.2 Sound Cues

Sound Cues use existing Sound Waves to create new
sounds, by combining Sound Waves and/or adjusting their
properties or adding effects to them. To create a new
Sound Cue, click the Add New button in the Content
Browser, scroll down to Sounds, select Sound Cue, and
then give it a name.

To edit a Sound Cue, simply double-click on it to open it in
the Sound Cue Editor. The Sound Cue Editor uses a node-
based graph very similar to Blueprints. However, it uses its
own specialized Nodes instead of the types of Nodes that
are available in Blueprints.

The basic idea is that you start with one or more Nodes on
the left that represent Sound Waves, and then you
connect those Sound Waves to Nodes in the middle that
will combine and modify them. Finally, whatever gets
outputted to the Output Node on the right is the sound
that the Sound Cue will actually play.

9 . 2 – S o u n d C u e s | 430

Figure 9.2.1 – The sound that is passed into the Output
Node is the sound that the Sound Cue will play

To hear what the output will sound like, click the Play Cue
button in the Toolbar. To hear what an individual Node
sounds like by itself, select that Node and click the Play
Node button.

Figure 9.2.2 – The Play Cue and Play Node buttons

You can add Nodes like you do in Blueprints, by right-
clicking in the graph and selecting from a Node Menu. Or

9 . 2 – S o u n d C u e s | 431

you can drag-and-drop Nodes from the Palette Window on
the right side of the Editor.

Figure 9.2.3 – The Palette Window in the Sound Cue Editor
contains several Nodes you can use to modify sounds

9 . 2 – S o u n d C u e s | 432

Audio Nodes

A Wave Player Node is used to output Sound Waves. If you
select it, you can edit its properties in the Details Panel on
the left. The Sound Wave property will specify which
Sound Wave the Node should output.

Figure 9.2.4 – The Wave Player Node

Figure 9.2.5 – Properties of the Wave Player Node

A Looping Node will take a sound as input, and output that
sound as a loop. In the Details Panel, you can choose to
have it loop a specific amount of times, or have it loop
continuously.

9 . 2 – S o u n d C u e s | 433

Figure 9.2.6 – The Looping Node

Figure 9.2.7 – Properties of the Looping Node

The Delay Node can be used to add a delay before a sound
is played. Each time the Delay Node is activated, the
amount of delay will be a random value between the Delay
Min and Delay Max. So if you set this to 1 and 3, for
example, each time the sound is played, the delay will be
between 1 and 3 seconds. If you wanted the delay to
always be the same value, you would need to enter that
value for both the Min and Max properties.

9 . 2 – S o u n d C u e s | 434

Figure 9.2.8 – The Delay Node

Figure 9.2.9 – Properties of the Delay Node

The Doppler Node can be used to add the Doppler effect to
a sound. This is the effect that occurs when sounds, such
as the siren of an ambulance, increase in pitch as they
move towards you and decrease in pitch as they move
away. The Doppler Intensity property can be used to
specify how pronounced this effect should be, with higher
values increasing the effect.

9 . 2 – S o u n d C u e s | 435

Figure 9.2.10 – The Doppler Node

Figure 9.2.11 – Properties of the Doppler Node

The Modulator Node can be used to play a sound at a
random pitch and volume each time it’s played. This can
be used to make the audio sound slightly different each
time so as not to get repetitive. The range of the random
values generated can be set in the Details Panel.

Figure 9.2.12 – The Modulator Node

9 . 2 – S o u n d C u e s | 436

Figure 9.2.13 – Properties of the Modulator Node

The Oscillator Node can be used to add a continuous
modulation of volume and pitch within a single instance of
a sound being played. The first two properties are used to
enable the modulation of the volume and/or pitch.
Amplitude refers to the height of the Sound Wave, with
larger waves producing louder volumes. Frequency affects
the pitch of a sound, with higher frequencies resulting in
higher pitches. The remaining properties deal with more
advanced wave physics, with the Offset properties
controlling the wave’s phase and the Center properties
controlling the center of oscillation.

Figure 9.2.14 – The Oscillator Node

9 . 2 – S o u n d C u e s | 437

Figure 9.2.15 – Properties of the Oscillator Node

In addition to Nodes that alter sounds, the Palette also
contains many useful Nodes for combining sounds. A
Mixer Node takes two or more sounds as input and
outputs all of those sounds being played simultaneously.
In the Details Panel, you can adjust the volumes of each
input.

Figure 9.2.16 – The Mixer Node in use – this logic combines
two different sounds and plays them simultaneously

9 . 2 – S o u n d C u e s | 438

Figure 9.2.17 – Properties of the Mixer Node

The Concatenator Node is just like the Mixer Node, except
that instead of playing its input sounds simultaneously, it
plays them one after the other.

Figure 9.2.18 – The Concatenator Node

A Random Node will randomly output just one of its input
sounds each time it’s activated. By default, each sound has
an equal chance of being played each time, but you can
change this using the Weights property. For example, if
you set the weight of the first sound to 2, and leave the
weight of the second sound at 1, then the first sound has
twice the chance of being played each time.

9 . 2 – S o u n d C u e s | 439

Figure 9.2.19 – The Random Node

You can use the Preselect at Level Load property to trim
down the number of possible inputs that can be selected
from. For example, if the Random Node has 10 inputs and
Preselect at Level Load is set to 5, then as soon as the
Level loaded, it would randomly select five of the inputs,
and then only randomly select from those five each time
the Sound Cue was played. This can be used to trim down
memory usage for Random Nodes that have several
inputs. Note that this Node doesn’t have any effect when
simulating your game, it will only work when playing a
build outside of the Editor.

9 . 2 – S o u n d C u e s | 440

Figure 9.2.20 – Properties of the Random Node

With the Randomize Without Replacement property
checked, it will ensure that each sound gets played once
before the same sound can be randomly selected again.

The Branch Node will output one of its input sounds based
on the value of a Boolean variable. In the Details Panel,
you use the Bool Parameter Name property to specify the
name of the Boolean variable that should be evaluated. If
that Boolean has a value of True, whatever sound is
connected to the True pin will be outputted. If the value is
False, the sound connected to the False pin will be
outputted, and if the Boolean has a value of Null, then the
sound connected to the Parameter Unset pin will be used.

Figure 9.2.21 – The Branch Node

9 . 2 – S o u n d C u e s | 441

Figure 9.2.22 – Properties of the Branch Node

The Switch Node is just like the Branch Node, except it
outputs a sound based on the value of an Integer variable
instead of a Boolean variable.

Figure 9.2.23 – The Switch Node

9 . 3 - A t t e n u a t i o n | 442

9.3 Attenuation

Attenuation is a scientific term that refers to the reduction
in strength of a signal. In the case of an audio signal, this
refers to the decrease in volume that occurs due to
distance. In Unreal Engine, you have the ability to edit the
attenuation properties of the sounds in your game,
affecting the rate at which their volumes decrease across
distances.

When it’s selected, the Ambient Sound Actor will have two
spheres around it, an inner sphere and an outer sphere. At
any point within the inner sphere, the sound will be heard
at 100% volume. Going from the outer edge of the inner
sphere, to the outer edge of the outer sphere, the volume
will decrease from 100% to zero.

9 . 3 - A t t e n u a t i o n | 443

Figure 9.3.1 – The inner and outer attenuation spheres of
an Ambient Sound Actor

In the Details Panel, under the Attenuation category, you
can edit the sizes of these spheres. Note that the Override
Attenuation property needs to be checked in order to edit
the attenuation properties.

9 . 3 - A t t e n u a t i o n | 444

Figure 9.3.2 – The Attenuation category of an Ambient
Sound Actor

Figure 9.3.3 – If the Override Attenuation property is
checked, you can expand the Attenuation Overrides menu

9 . 3 - A t t e n u a t i o n | 445

To change the size of the inner sphere, the area in which
the sound is heard at full volume, you use the Radius
property. As you change the size of the inner sphere, the
size of the outer sphere changes as well. This is because
the outer sphere is defined by the Falloff Distance, the
distance from the edge of the inner sphere to the edge of
the outer sphere, as opposed to being defined by absolute
size. When you adjust the Falloff Distance, it will change
the size of the outer sphere, making the sound audible at
greater distances.

You also have the ability to change the Attenuation Shape.
By default, spheres are used, as this is the most natural
way that sound will attenuate. But if, for example, you had
a sound coming from within a rectangular room, you might
want to use the Box shape in order to better fit the
attenuation to the shape of the room.

Attenuation Curves

As mentioned already, in the area described by the Falloff
Distance, the sound will go from 100% volume to zero. But
the rate at which this occurs can be adjusted, by setting
the Distance Algorithm that should be used to define the
Attenuation Curve. By default, this will use a Linear curve,
meaning the volume will decrease evenly.

9 . 3 - A t t e n u a t i o n | 446

Using the Logarithmic curve, the volume will decrease
more rapidly at first, then the rate of decrease will slow as
the sound approaches the bounds of the attenuation
shape. The LogReverse curve, as its name indicates, is the
reverse of that. The volume will decrease slowly at first,
then more rapidly.

The Inverse curve is similar to the Logarithmic curve except
the volume decreases extremely rapidly at first, then very
slowly for the remainder of the distance. The
NaturalSound curve is somewhere in-between the
Logarithmic curve and the Inverse curve, and is supposed
to represent the most natural attenuation curve that
sounds have in the real world.

Finally, you can create your own custom attenuation
curves, using the tool of the Custom Attenuation Curve
property, which creates curves the same way the Timeline
Editor did in the section on Timelines. So you hold down
the Shift key and left-click in the graph to add a new point
on the curve. Then you can click and drag on those points,
or manually adjust their locations, to change the shape of
the curve.

9 . 3 - A t t e n u a t i o n | 447

Figure 9.3.4 – Creating a custom attenuation curve

Spatialization

Another property of sound that can be set in the
Attenuation category is Spatialization. This refers to sound
being heard in 3D. For example, in the real world, if a
sound is coming from your left, your brain can discern this
because the sound will be slightly louder in your left ear
than in your right ear. You can mimic this in a game by
having sounds coming from the left be louder in the left
speaker than in the right speaker. With the Allow
Spatialization property checked, and the Spatialize
property itself checked, the sound will exhibit that
behavior in the game.

One thing regarding Spatialization, that may seem
counterintuitive at first, is that, in order for Spatialization

9 . 3 - A t t e n u a t i o n | 448

to work, the sound must be mono, meaning it only has one
channel of output. This is because sounds in stereo already
have the relative volumes defined for each speaker
output. So you need to use mono sounds, so that the
Engine can determine the relative volumes itself, based on
the rotation of your character relative to the sound.

Attenuation Hierarchy

At the highest level, you can create an Attenuation Asset,
that can be saved and applied to multiple sound Assets. To
create a new Sound Attenuation Asset, click Add New, go
to Sounds, then select Sound Attenuation. You can double-
click on it to edit its properties, which are the standard set
of attenuation properties that were just covered.

You can apply this Sound Attenuation to as many sound
objects as you want, and then you only need to make
changes for the entire group in one place. For example, if
you open a Sound Cue, under the Attenuation Settings
property, you can select the Sound Attenuation Asset you
created and it will apply those attenuation properties to
the Sound Cue.

9 . 3 - A t t e n u a t i o n | 449

Figure 9.3.5 – Applying a Sound Attenuation Asset to a
Sound Cue

But if you decide you want to set different settings for the
Sound Cue, you can check the Override Attenuation
property and that will cause the Attenuation Settings
property to be ignored, and will instead use the settings
defined in the Sound Cue itself.

Now let’s say you drag several instances of the Sound Cue
into your Level and you want to change the settings for

9 . 3 - A t t e n u a t i o n | 450

just one of the instances, without changing the settings of
the Sound Cue itself. You can select that instance and then
edit its Attenuation properties directly in the Details Panel
by checking the Override Attenuation property. Or you can
choose an existing Sound Attenuation Asset to use just for
that instance.

9 . 4 – I m p o r t i n g a n d C o n v e r t i n g A u d i o | 451

9.4 Importing and Converting Audio

Most of the time, importing audio files into Unreal Engine
will be as straightforward as importing any other type of
file. You can either click the Import button in the Content
Browser and browse to the file you want to import, or you
can simply drag and drop the file directly into the Content
Browser.

If the file is a wave file, formatted the way Unreal Engine
likes it, the file will be converted to a Sound Wave Asset
which you can then use as you like. For Unreal Engine to
successfully import an audio file, it must be an
uncompressed, 16-bit wave file. But if you try to import an
audio file that isn’t in the right format, such as an MP3, or
an 8-bit wave, you will get an error message.

Figure 9.4.1 – Error message when trying to import audio
in an unsupported format

9 . 4 – I m p o r t i n g a n d C o n v e r t i n g A u d i o | 452

Audacity

To get the file into the proper format so that the Engine
can import it, you simply need to open the file in an
application that can read it, and then export it back out in
the proper format. One program that can do this is
Audacity. It is free to download and use, can read many
different types of audio files in various formats, and it can
export those files in a format which the Unreal Engine can
read.

The easiest way to find a copy of Audacity to download is
to simply go to your favorite search engine and type
“download Audacity” and click on the first result. Or you
can just type in the following address directly -
audacityteam.org/download. From there, click on the link
that corresponds to your operating system, click on the
“installer” link, and then run the .exe file that is
downloaded.

If you are running Windows 10, this will probably still
work. However, if you get an error message when trying to
open a file in Audacity, go back to the first page and click
on the link in the line “Windows 10 may require
appropriate audio drivers” and then follow the instructions
from there.

Once you have Audacity installed, converting your audio
files into the proper formatting is pretty simple. First, go to

9 . 4 – I m p o r t i n g a n d C o n v e r t i n g A u d i o | 453

File > Open, and open the file you want converted. If you
get a Warning message, simply leave the default choice
selected and click “OK.” Now, go back up to the File menu
and click on “Export Audio.” Give the new file a name and
make sure the type selected is “WAVE signed 16 bit PCM”
which should be the default choice. Now click on “Save,”
and when the Edit Metadata box pops up, you can simply
press OK without making any changes.

Figure 9.4.2 – The free software application Audacity can
be used to convert sound files into a format that Unreal
Engine will accept

9 . 4 – I m p o r t i n g a n d C o n v e r t i n g A u d i o | 454

The file should now be properly formatted, and when you
drag-and-drop it into the Content Browser, it should
import it into the project without any problems.

9 . 5 – C h a p t e r 9 Q u i z | 455

9.5 Chapter 9 Quiz

1. What file format does Unreal Engine use for audio
files?

2. What type of Asset uses existing Sound Waves to
create new sounds, by combining them and/or
adjusting their properties or adding effects to them?

3. What type of Actor is used to play Sound Waves or
Sound Cues?

4. What would be the result of increasing the value of
the Compression Quality property of a Sound Wave?

5. What is the difference between playing a sound and
spawning a sound?

6. What effect occurs when sounds, such as the siren of
an ambulance, increase in pitch as they move
towards you and decrease in pitch as they move
away?

7. What Node can be used to play a sound at a random
pitch and volume each time it’s played?

8. What is the scientific term for the reduction in
strength of a signal?

9 . 5 – C h a p t e r 9 Q u i z | 456

9. What is the difference between the inner and outer

Attenuation Shapes (by default a sphere) of an
Ambient Sound Actor?

10. In order for Spatialization to work, does a sound
need to be mono or stereo?

11. Name a free software application you can use to
convert an audio file into a format that Unreal will
accept.

9 . 5 – C h a p t e r 9 Q u i z | 457

Answers

1. .wav

2. Sound Cue

3. Ambient Sound Actor

4. The quality of that sound will increase at a cost of
increasing the amount of memory required for the
sound.

5. When you spawn a sound, you have control over it.
You can choose to stop playing the sound at any
point, or modify its properties. But when you play a
sound, you don’t have any control over it. You can’t
modify or stop it.

6. Doppler effect

7. Modulator Node

8. attenuation

9. At any point within the inner shape, the sound will be
heard at 100% volume. In the outer shape, the sound
will decrease in volume as it gets closer to the outer
edge.

9 . 5 – C h a p t e r 9 Q u i z | 458

10. mono

11. Audacity

C h a p t e r 1 0 – A d d i t i o n a l T o p i c s | 459

10
Additional Topics

1 0 . 1 D o w n l o a d i n g C o n t e n t | 460

10.1 Downloading Content From the Epic Games

Launcher

This section will show you how to use the Epic Games
Launcher to download content to use in the creation of
your games. In the Epic Games Launcher, the Learn tab
contains content you can download for free and the
Marketplace tab contains content you can purchase.

Figure 10.1.1 – The tabs of the Epic Games Launcher

Learn Tab

If you go to the Learn tab and scroll down, starting with
the Engine Feature Samples category, you will find a lot of
content you can use in your games and also sample

1 0 . 1 D o w n l o a d i n g C o n t e n t | 461

projects that help to illustrate various concepts and
features of the Engine.

For example, the Open World Demo Collection contains
various meshes like grass, rocks, bushes and trees that you
can use to make nice-looking outdoor terrains. There are
downloads for water, mountains, particle effects,
Blueprints, and so on. There’s also projects you can
download that demonstrate certain gameplay concepts or
even entire sample games. You can click on any of the
boxes to get more details and to actually download the
content.

1 0 . 1 D o w n l o a d i n g C o n t e n t | 462

Figure 10.1.2 – Click on a box such as this one to learn
more information about that content

Figure 10.1.3 – A sample platform game you can download
for free from the Learn tab

Marketplace Tab

The Epic Games Marketplace is where you can find Assets
to purchase. You can get to the Marketplace either by
clicking on the Marketplace tab in the Epic Games
Launcher, or by clicking on the Marketplace button in the
Toolbar of the Level Editor.

1 0 . 1 D o w n l o a d i n g C o n t e n t | 463

The Marketplace is divided into various categories based
on the Assets provided. For example, you have
environments, materials, audio, and so on. You can get to
the various categories either by scrolling through the page,
or by using the links in the menu to go straight to the
category. Same as the Learn tab, just click on the boxes to
learn more about that content or to download it.

Vault

When you download something through the Learn tab or
the Marketplace, you can access it by clicking on the
Library tab and going down to the Vault section. If the
content is a sample project, you can click on the yellow
button under its name to create that project. If the
content is a group of Assets, you can click on the yellow
button to add those folders to the Content Browser of an
existing project that you specify.

Figure 10.1.4 – Access content you download through the
Vault section of the Library tab

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 464

10.2 Importing 3D Objects From the Internet

This section will show you a couple more places where you
can find free 3D objects to download, and how to import
those objects into Unreal Engine.

Tf3dm.com

One great website to get free 3D models from is
tf3dm.com. You can use the search box to look for
something specific, or you can browse the categories using
the icons. Under the description of the category will be a
row of subcategories you can browse to.

Figure 10.2.1 – The search box at tf3dm.com

Figure 10.2.2 – The different categories available are
represented by these icons

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 465

One of the great things about this site is that it is
specifically devoted to free 3D objects. There is a strip at
the top advertising 3D models for a price, but other than
that, all the results that appear will be free to download.
However, something you need to be aware of that is very
important if you’re planning on making games that you
charge money for, is that just because an Asset is free to
download, that doesn’t necessarily mean you are free to
use it in a commercial game (a game that makes money).

For example, some Assets come with a Personal Use Only
license. This means you’re allowed to download it, and
import it in your projects, and make a game with it; but
the only thing you can do with that game is play it yourself
or perhaps give it away for free to a few friends. If you
started charging money for the game, the person who
created the Asset would be allowed to sue you for
violating the terms of the license.

So if you want to find objects that are free to use in
commercial games, you can check the checkbox under the
search bar labeled “Commercial license only” and then run
the search again. This will filter the results down to only
those with Commercial Use licenses. However, you still
need to see if the Asset comes with any further
stipulations. Often, the artist will require you to credit
them in the work in order for the license to be valid.

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 466

Another great thing about this site is that it doesn’t
require you to have an account to download. So when
you’re ready to download an object, simply click on the
blue Download button, and it will download a zip file
containing the object in all the different file formats listed
below the button. The only 3D object type that Unreal
Engine can directly import is the .fbx file type.

Figure 10.2.3 – The download button will download a zip
file containing the file formats listed in the box below the
button

Luckily, most of the websites you can download 3D objects
from have a way for you to narrow down the results to a
specific type you’re looking for. For example, on this site,
there will be a strip of buttons showing the different file
types available, and clicking on a type will narrow the
results down to only objects that have a version of that

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 467

type available. So if you click on “fbx” you will only see
those objects that are available as an .fbx file.

Figure 10.2.4 – You can filter your results by file format

Cgtrader.com

Another 3D-object website you can use is cgtrader.com.
You can use the search bar, or if you want to browse by
category, you can go up to the top of the page, hover over
“3D models” and then click on the category you’re
interested in. From there, you can choose to either browse
that category as a whole or click down into one of its
subcategories.

Figure 10.2.5 – The search box at cgtrader.com

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 468

Figure 10.2.6 – You can browse the various categories
available by clicking on the 3D models menu at the top of
the home page

By default, you will mainly see listings of the objects for
sale, so if you’re only interested in the free objects, you
will need to check the “Free” checkbox. The first row will
still contain premium content, but after that you will only
see results for objects that can be downloaded for free.
This site has a dropdown you can use to search by file
type.

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 469

Figure 10.2.7 – Narrow results down by price and/or file
format

Just like with the last site, or any site that you download
artistic content from, make sure you check the details to
see what kind of license agreement it has and what the
terms of that agreement are. Unlike the last site, you will
need to have an account in order to download from
cgtrader.com.

Importing .fbx Files

Importing .fbx files into Unreal Engine works pretty much
the same as importing any other file. You can either use
the Import button in the Content Browser, or drag-and-
drop the files into the Content Browser directly.

One difference when importing an .fbx file, however, is
that the import is heavily customizable. A popup menu will
appear giving you a long list of options regarding how you
want the object imported.

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 470

Figure 10.2.8 – The FBX Import Options window

For example, if the object is a static mesh, it will, by
default, import it as a Static Mesh. But if you wanted to
import it as a Skeletal Mesh, you could check the Import as
Skeletal checkbox. You also have the option to have the
importer automatically generate the object’s collision
properties.

1 0 . 2 – I m p o r t i n g 3 D O b j e c t s | 471

By default, the object will be added to the center of the
Level, with it rotated and scaled the same as it was when it
was exported, but you can change these settings if you
wish. You can also choose if you want the Materials and
Textures imported as well, or if you only wish to import
the underlying mesh. When all the options are to your
liking, you simply need to click the Import button to
complete the import. You may get some warning
messages if the file wasn’t formatted exactly how the
Engine likes it, but often, the import will still work.

One thing you need to be aware of, however, is that, even
with the restriction of only being able to import .fbx files,
and despite Epic Games’ best efforts, the system is still far
from perfect. Most of the time, the mesh itself will import
without any problem, but there are still considerable
technical issues regarding Materials and Textures
importing properly. Because of this, Epic Games actually
recommends that all Materials be applied within the
Unreal Editor itself, rather than trying to import them in
already applied to the mesh.

1 0 . 3 – C h a p t e r 1 0 Q u i z | 472

10.3 Chapter 10 Quiz

1. What tab of the Epic Games Launcher contains
content you can download for free?

2. What tab of the Epic Games Launcher contains
content you can download for a price?

3. When you download something through the Learn or
Marketplace tabs of the Epic Games Launcher, how
do you access it?

4. True or False: If an Asset is made available to
download for free by its owner, this means you can
use it in your games without restriction.

5. What file format does a 3D model need to be in for
Unreal to import it?

6. Is it better to apply a Material to a mesh before or
after importing it into Unreal?

1 0 . 3 – C h a p t e r 1 0 Q u i z | 473

Answers

1. Learn tab

2. Marketplace tab

3. In the Vault section of the Library tab of the Epic
Games Launcher.

4. False. You might be able to use it without restriction,
but being available as a free download isn’t an
indication of this. You will need to check the licensing
requirements that have been specified by the owner.

5. .fbx

6. It is better to apply a Material to a mesh after it has
been imported into Unreal.

	1.1 Licensing
	1.2 Registration
	1.3 Download & Installation
	1.4 Chapter 1 Quiz
	2.1 Projects
	2.2 Levels
	2.3 Actors
	2.4 Chapter 2 Quiz
	3.1 Level Editor Overview
	3.2 Place Mode
	3.3 Navigating Within the Viewport
	3.4 Moving, Rotating, and Scaling Actors
	3.5 Snapping
	3.6 Different Ways to View Your Level
	3.7 Content Browser
	3.8 Details Panel
	3.9 World Outliner
	3.10 Chapter 3 Quiz
	4.1 Static Meshes
	4.2 Brushes
	4.3 Materials
	4.4 Lights
	4.5 Atmospheric Fog
	4.6 Player Start Actor
	4.7 Components
	4.8 Volumes
	4.9 Chapter 4 Quiz
	5.1 Introduction to Blueprints
	5.2 Variables
	5.3 Arrays
	5.4 Functions
	5.5 Flow Control
	5.6 Accessing Actors Within Blueprints
	5.7 Blueprint Classes
	5.8 Timelines
	5.9 Chapter 5 Quiz
	6.1 Game Modes
	6.2 Pawns
	6.3 Characters
	6.4 Controllers
	6.5 Input Mapping
	6.6 Setting Up Basic Character Movement
	6.7 Chapter 6 Quiz
	7.1 Collisions Overview
	7.2 Causing Damage Due to Collisions
	7.3 Chapter 7 Quiz
	8.1 UMG Overview
	8.2 Root Widget
	8.3 Canvas Panel
	8.4 Common Widget Properties
	8.5 Visual Designer
	8.6 Text Widget
	8.7 Button Widget
	8.8 Border Widget & Image Widget
	8.9 Progress Bar Widget
	8.10 Check Box Widget
	8.11 Horizontal Box & Vertical Box
	8.12 Grid Panel & Uniform Grid Panel
	8.13 Chapter 8 Quiz
	9.1 Audio Overview & Sound Waves
	9.2 Sound Cues
	9.3 Attenuation
	9.4 Importing and Converting Audio
	9.5 Chapter 9 Quiz
	10.1 Downloading Content From the Epic Games Launcher
	10.2 Importing 3D Objects From the Internet
	10.3 Chapter 10 Quiz

		2017-01-29T19:02:26+0000
	Preflight Ticket Signature

